
Final Project Report
ASEN 5014: Linear Control Systems

Jack Huston & Tsuening Lee

University of Colorado Boulder
November 24th, 2025

1 TEAMMEMBER CONTRIBUTIONS
Jack Huston Tsuening Lee
Primarily responsible for the development of the de-
liverables for Part B, and also contributed to the
writeup and scripting for Part A.

Primarily responsible for the development of the de-
liverables for Part A, and also contributed to the
writeup and review of Part B.

2 PART A: LINEAR SYSTEMS ANALYSIS

2.1 System Design and Equation Derivation
The linearized system can be described as follows:

ẋ = Ax+Bu (1)

y = Cx+Du (2)
with the following A, B, C , and D matrices defining the model:

A =


0 1 0 0
3µ
r30

0 0 2
√

µ
r0

0 0 0 1

0 −2
√

µ
r50

0 0

 (3)

B =


0 0
1 0
0 0
0 1

r0

 (4)

C =

[
1 0 0 0
0 0 1 0

]
(5)

D =

[
0 0
0 0

]
(6)

The state vector and control inputs represent small perturbations about a nominal circular orbit of radius r0:
x = [δr δ̇r δθ δ̇θ]T , u = [δu1 δu2]

T . (7)
Here, δr and δθ denote the radial and in-track angular deviations from the reference orbit, while δ̇r and δ̇θ represent
the corresponding velocity perturbations. The inputs δu1 and δu2 are small thrust-generated accelerations in the
radial and in-track directions. The measured outputs are

y = [δr δθ]T , (8)
representing the sensed deviations in orbital radius and angular position.

This linear model arises from a first-order perturbation of the nonlinear orbital dynamics and is valid for small
deviations around the circular reference orbit. It captures the dominant in-plane gravitational coupling and the
effect of radial and tangential thrust on local relative motion. The purpose of the physical system is to maintain
a desired orbit despite disturbances or initial offsets, and the model provides a useful approximation for designing
such controllers.

Several simplifying assumptions limit the fidelity of the state-space representation. The model is strictly two-
dimensional and therefore does not capture out-of-plane motion, plane changes, or cross-coupling between orbital
elements. Earth is treated as a point-mass body, so perturbations such as J2 oblateness, atmospheric drag, third-body
effects, and solar radiation pressure are neglected. Additionally, actuator and sensor dynamics are idealized: thrust
saturation, delays, and measurement noise are not represented. Finally, because the equations are linearized, the
model loses accuracy for large deviations where nonlinear orbital mechanics dominate. Despite these limitations,
the system accurately reflects the essential in-plane dynamics needed for analyzing small perturbation stabilization
and orbit-holding performance.

1

2.2 Open Loop Response and Closed Loop Requirements
To build on the system description in Part A.1, the control objective for this project is to stabilize the spacecraft
about its nominal circular orbit and to reject small perturbations introduced through initial condition offsets. This is
demonstrated by identifying a system that drives all perturbation states in x(t) to zero so that the radius and in-track
angle remain at their desired reference values.

The desired closed-loop performance is characterized by the following time-domain specifications:

1. All closed-loop poles must lie strictly in the left-half complex plane (asymptotic stability);

2. The radial and angular response y(t) must reach 95% of the reference value within one orbital period;

3. The radial and angular overshoot/undershoot of the desired value must remain below 20%;

4. The radial and angular steady-state tracking error must converge to zero.

5. The spacecraft acceleration should not exceed 0.01 g for the initial deviation given (Assuming 1 lbf thruster
and 100 lbm spacecraft bus)

These requirements imply that the dominant closed-loop poles must have sufficiently negative real parts to enforce
the required settling time over one orbital period, while having adequate damping to satisfy the overshoot bound.

Before designing feedback, we examine the open-loop dynamics. Using the MATLAB command eig(A) (see
Appendix code), the open-loop poles of the plant are computed to be

λ1,2 = 0, λ3,4 = ±0.0011569 j, (9)

As the real component for all eigenvalues is 0, the open-loop system ismarginally stable. The purely imaginary eigen-
values generate undamped oscillations in the in-plane states, while the double eigenvalue at the origin introduces
constant or slowly drifting modes. Because no eigenvalues have negative real parts, perturbations do not naturally
decay, and because no eigenvalues have positive real parts, perturbations do not grow.

To verify the open-loop behavior, we simulate the plant with zero input using MATLAB. The initial perturbation
state is

x(0) = δx = [0.1 km; 0 km/s; 0.5◦; 0 rad/s],

which corresponds to a 100 m radial offset and a 0.5◦ in–track angle error relative to the circular reference orbit. No
control input is applied (u(t) = 0). The resulting output trajectories for this disturbance are shown in Fig. 1.

Figure 1: Open Loop Control Response

2

These responses follow directly from the open-loop pole locations. The radius δr(t) exhibits a clear periodic oscil-
lation with constant amplitude, matching the undamped sinusoidal motion generated by the purely imaginary pole
pair ±0.0011569j. Because the real parts of these poles are zero, the system has no natural restoring or dissipative
mechanism, so the oscillation neither grows nor decays over time. In contrast, the angular deviation δθ(t) shows a
slow drift mixed with a very small oscillatory component. This behavior is characteristic of the double multiplicity
eigenvalue at the origin, which can produce linear-in-time growth or decay. Importantly, neither state returns to the
nominal value nor diverges catastrophically but instead both remain bounded but non-decaying, exactly as expected
for a marginally stable system. The simulated trajectories therefore match the expected pole structure and illustrate
why state feedback is required to achieve asymptotic stabilization.

2.3 System Reachability and Observability
To determine the reachability (controllability) and observability properties of the plant, we compute the standard
controllability and observability matrices. The controllability matrix is defined as

C =
[
B AB A2B A3B

]
, (10)

and the MATLAB command ctrb(A,B) confirms that

rank(C) = 4. (11)

Since the rank equals the number of states n = 4, the system is fully reachable. Thus, state feedback can relocate all
open-loop poles, and no uncontrollable modes are present.

The observability matrix is defined as

O =


C
CA
CA2

CA3

 , (12)

and using the MATLAB command obsv(A,C), we obtain

rank(O) = 4. (13)

Because the rank equals the dimension of the state space, the system is fully observable. All state components
influence the measured outputs in a way that allows them to be reconstructed by an observer.

Since both C and O have full rank, the system possesses no unreachable or unobservable subspaces. Therefore,
every pole of the open-loop system may be independently reassigned through state-feedback control, and the poles
can be placed arbitrarily in the left-half plane. This guarantees that the full closed-loop pole set (controller poles and
observer poles) can be shaped to meet the stabilization and transient performance specifications defined in Part A.2.

3 PART B: LINEAR CONTROL DESIGN

3.1 Manual State Feedback Design with Integral Action
In order to design a state feedback controller with a manual design approach that meets the specifications in part
A.2 while enforcing zero steady-state error in the measured output, the integral control error technique from class
is utilized. To begin, the augmented matrices are created, in the case of the system they are:

Aaug =

[
A 04×2

−C 02×2

]
, Aaug ∈ R6×6, (14)

Baug =

[
B

02×2

]
, Baug ∈ R6×2, (15)

Faug =

[
04×2

I2×2

]
, Faug ∈ R6×2, (16)

3

Caug =
[
C 02×2

]
, Caug ∈ R2×6, (17)

Daug = 02×2. (18)

u = −Kaug xaug + r, (19)

where r is a constant reference (here taken as zero perturbation) and

Kaug = [Kx Ki]

contains both the state feedback gainsKx and the integral gainsKi.
Closed-loop eigenvalues for the augmented system were selected to satisfy the qualitative requirements from

Part A.2:
• Real parts negative and of order 10−3 s−1, corresponding to settling within approximately one orbital period,
• And sufficient damping to avoid oscillatory behavior and keep overshoot/undershoot within the±20% bands
With desired poles selected, the MATLAB command place() is used to find the augmented feedback Kaug

such that Aaug −BaugKaug has these eigenvalues. After trial and error, the following closed-loop poles are selected:

λCL,manual = {−0.00123, −0.00115, −0.00110, −0.00100, −0.00018, −0.00010} (20)

The resulting simulated closed-loop perturbation response to the initial disturbance of δx = [100 m; 0 km/s; 0.5◦; 0 rad/s]
is shown in Fig. 2. Both radial and angular deviations enter the 5% settling band within the single orbital period
(shown by the shaded yellow region) and remain inside of the ±20% over/undershoot limits throughout the re-
sponse (shown by the purple shaded region). The response sees a small initial undershoot, which is consistent with
the real, well-damped closed-loop poles in Eq. (20). The integral action guarantees that the steady-state perturbations
converge to zero as required in our design guidelines.

Figure 2: Manual Closed Loop Radial and Angular Response

The corresponding thrust accelerations are plotted in Fig. 3. The peak radial thrust is approximately 7.5×10−3 g,
and the peak in–track thrust is about 1.0 × 10−2 g. The magnitude of the combined forcing vector fits inside the
±0.01 g actuator constraint band (shown by the shaded green region).

4

Figure 3: Manual Closed Loop Acceleration Forcing Response

This response could be achieved by a single 1 lbf thruster on a 100 lbm spacecraft with the appropriate engine
throttling and spacecraft attitude control. The thrust decays rapidly after the first fraction of an orbit. As a basic
measure of “actuator energy”, we compute the integral of the required acceleration over time

Eman =

∫ Tsim

0

∥u(t)∥2 dt, (21)

where u(t) is in units of km/s2. The numerical value calculated here will be used later to compare against the optimal
LQR design. Overall, the manually tuned pole placement achieves the time–domain specifications with physically
reasonable control effort.

3.2 Luenberger Observer Design and Performance
As can be seen in our measurement vector, y, not all states are directly measured. Only the outputs

y = [δr δθ]T

are available. To reconstruct the full state vector, we design a Luenberger observer of the form

˙̂x = Ax̂+Bu+ L
(
y − Cx̂

)
, (22)

where x̂ is the state estimate and L is the observer gain. The estimation error e = x− x̂ can therefore be written as

ė = (A− LC) e. (23)

Because the plant is fully observable (Part A.3), the eigenvalues of A− LC can be placed anywhere.
From lecture, a guideline is to choose the observer poles to be faster than, but not orders of magnitude faster

than, the closed–loop controller poles. This ensures that the state estimate converges rapidly relative to the plant
dynamics without amplifying sensor noise excessively. Here we select the observer poles to be five times faster than
the four dominant controller poles:

λobs = 5·
{
− 0.00123, −0.00115, −0.00110, −0.00100

}
(24)

={−0.00615, −0.00575, −0.00550, −0.00500} (25)

and compute the gain using L = place(AT , CT , λobs)
T .

5

The controller and observer are combined by forming an 8–state augmented system in which the true plant
and the observer evolve together. With zero initial observer error (x̂(0) = x(0)), the estimated and true states are
numerically indistinguishable as expected. Without error, the two states should behave identically. In the case with
a large initial mismatch, we set a 50% error in the initial estimate, x̂(0) = 0.5x(0). The resulting trajectories are
shown in Fig. 4. For all four states, the estimated trajectories converge rapidly to the true trajectories within roughly
half an orbit, and the residual estimation error is negligible over the remainder of the simulation.

Figure 4: 50% Error Luenberger Observer Convergence

The convergence rate is quantified in Fig. 5, which plots the Euclidean norm ∥e(t)∥2 for both zero and non–zero
initial observer error. With zero initial error, the norm remains essentially at machine precision. With 50% initial
error, the norm peaks at approximately 4.5 in mixed (km, rad) units before decaying by more than two orders of
magnitude, consistent with the real parts of the observer poles in Eq. (25). This confirms that the observer behaves
as designed.

Figure 5: Luenberger Observer Error Magnitude Convergence

6

To assess the impact on closed–loop performance, Fig. 6 compares themanual full–state feedback response (using
the true states) with the manual+observer configuration (using x̂) for the same initial condition. The two responses
are similar, both satisfy the settling and overshoot constraints defined in Part A.2. This suggests that the observer
does not degrade the performance when its poles are chosen moderately faster than the controller poles.

Figure 6: Manual Pole Placement Response Versus Observer Response

In a realistic setting with sensor noise, the choice of fast observer poles would trade estimation speed against
noise amplification. Because Lmultiplies the output residual y−Cx̂, high–frequency measurement noise would be
injected directly into the estimated states and, through the state feedback, into the control input. For this project,
we neglect measurement noise and so the significance of this is not relevant. However, the current observer design
would likely need to be slowed down in a noisy environment or replaced by a Kalman filter to avoid excessive control
chattering.

3.3 Infinite-Horizon LQR Design with Observer and Comparison
Finally, we design an optimal state feedback law using the infinite–horizon quadratic cost

J =

∫ ∞

0

(
xTQx+ uTRu

)
dt, (26)

whereQ penalizes state deviations andR penalizes control effort. We selectQ andR using Bryson’s rule as outlined
in the lecture so that each term in the cost is scaled by its maximum allowable magnitude. Let

xmax =


0.2 δr0

1.0

0.2 δθ0

1.0

 , ūmax = 0.01 g0 = 0.01× 9.80665

1000
km/s2, umax =

[
ūmax

ūmax

]
, (27)

where δr0 and δθ0 are the initial perturbations and g0 is standard gravity. The components of xmax correspond
to the 20% overshoot/undershoot limits for the position states and conservative bounds for the velocity states.The
components of umax correspond to a 0.01 G maximum acceleration as previously discussed.

We then specify relative importance weights

αstates =


0.10
0.05
0.80
0.05

 , βinputs =

[
0.5
0.5

]
,

7

assigning the largest weight to angular position (which directly affects along–track error) while giving smaller but
non–zero weight to the remaining states. It was found through experimentation that the larger weight on angular
position was required to get the response to meet the design guidelines previously stated. The control weights are
chosen equal because both thrusters are equally limited. Following Bryson’s rule, we define

Q = diag

((
αstates

xmax

)2
)
, R = ρ diag

((
βinputs

umax

)2
)
, (28)

where the scalar ρ > 0 tunes the overall trade–off between performance and control effort. Through trial–and–error
simulations, we found that ρ = 80 resulted in a balance that met our design requirements.

With these matrices, the MATLAB command lqr(A,B,Q,R) returns the optimal gain KLQR and the corre-
sponding closed–loop poles of A− BKLQR. All LQR poles lie in the open left–half plane with real parts of roughly
the same order of magnitude as the manual design. Parameters were adjusted until this was the case in order to get
a similar response to what we manually achieved in order to ensure a fair ”energy” comparison. Compared with the
manually placed poles, the LQR poles are more evenly distributed, leading to a smoother, slightly less oscillatory
response.

To compare fairly with the previous sections, we retain the same observer gain L from Part B.5 and use the
estimated state in the LQR control law:

u = −KLQRx̂. (29)

The resulting closed–loop perturbation response is shown in Fig. 7. Relative to the manual design, the LQR controller
produces a slightly faster and more monotone return to the origin with reduced (almost zero) undershoot, while still
meeting the 5% settling and ±20% overshoot limits within one orbital period.

Figure 7: Manual Pole Placement Response Versus LQR Selected Response

The corresponding thrust accelerations are plotted in Fig. 8.

8

Figure 8: Manual Pole Placement Response Versus LQR Selected Response

Despite the faster settling performance, shown in Fig. 7, the LQR controller commands slightly lower peak ra-
dial and in–track thrusts than the manual design and maintains a smaller total thrust magnitude at all times while
satisfying the same ±0.01 g constraint. The integrated LQR actuator “energy”

ELQR =

∫ Tsim

0

∥uLQR(t)∥2 dt (30)

is 38.01% smaller than Eman from Eq. (21).

Eman = 9.7806× 10−6 km2/s3, ELQR = 6.0633× 10−6 km2/s3.

Therefore, the LQR design achieves at least comparable (if not better) disturbance-rejection performance while
also requiring less control effort.

9

APPENDIX

1 %Clear workspace
2 clear; close all; clc;
3

4 %Define Orbital Constants
5 mu = 398600; %km3/s2
6 r0 = 6678; %km
7

8 %Set Initial Condition (small perturbations about nominal orbit)
9 %x = [delta r; delta rdot; delta theta; delta thetadot]
10 deltar0 = 0.1; %0.1 km = 100 m radial deviation
11 deltardot0 = 0.0; %km/s
12 deltatheta0 = deg2rad(0.5); %rad (0.5 degrees)
13 deltathetad0 = 0.0; %rad/s
14

15 xnom = [deltar0; deltardot0; deltatheta0; deltathetad0];
16

17 %Define A, B, C, D matrices (At nominal Orbit)
18 A = [0 1 0 0;
19 3*mu/r03 0 0 2*sqrt(mu/r0);
20 0 0 0 1;
21 0 -2*sqrt(mu/(r05)) 0 0];
22

23 B = [0 0;
24 1 0;
25 0 0;
26 0 1/r0];
27

28 C = [1 0 0 0;
29 0 0 1 0];
30

31 D = zeros(2);
32 %% Part 1, Steps 1-3 - Linear System Analysis
33 %Find eigenvalues of A matrix (open-loop poles)
34 lambda = eig(A);
35 disp(”Open Loop A Matrix Eigenvalues: ”);
36 disp(lambda);
37

38 %Determine Reachability
39 P = ctrb(A, B);
40 rp = rank(P); %Full Rank == Fully Reachable
41 disp(”Reachability Rank: ” + rp + ” (Should be 4)”);
42

43 %Determine Observability
44 O = obsv(A, C);
45 ro = rank(O); %Full Rank == Fully Observable
46 disp(”Observability Rank: ” + ro + ” (Should be 4)”);
47

48 %Set up Linear System
49 sys = ss(A, B, C, D);
50

51 %Determine time vector for 2 orbits
52 Torbit = 2*pi/sqrt(mu/r03); %orbital period [s]
53 numOrbits = 5;
54 t = linspace(0, numOrbits*Torbit, 1000); %Simulation time vector [s]
55

56 %Simulate zero-input response from perturbation initial condition

10

57 [y, tOut] = initial(sys, xnom, t);
58

59

60 %% Part 2, Step 4 - Closed Loop Control
61 %Desired reference values
62 rhist = zeros(length(t),2);
63

64 %Define augmented matrices
65 Aaug = [A zeros(4,2);
66 -C zeros(2,2)];
67

68 Baug = [B; zeros(2,2)];
69

70 Faug = [zeros(size(B)); eye(2)];
71

72 Caug = [C zeros(2)];
73

74 Daug = zeros(size(Caug,1),size(Baug,2));
75

76 %Choose poles to satisfy requirements
77 poles = [-0.00123, -0.001, -0.0011, -0.00115, -0.00018, -0.0001];
78 Kaug = place(Aaug, Baug, poles);
79

80 %Define augmented closed loop system
81 AaugCL = Aaug - Baug*Kaug;
82 BaugCL = Faug;
83 sysCL = ss(AaugCL, BaugCL, Caug, Daug);
84

85 %Get response from reference profile
86 [yCLaug,,xCLaug] = lsim(sysCL, rhist, t, [xnom; zeros(2,1)]);
87

88 %Compute actuator efforts in each case, where uclaug = -K * xclaug
89 uCLaug = -(Kaug * xCLaug’); %units: km/s2
90

91 %Convert control accelerations from km/s2 to g’s
92 g0 = 9.80665; %m/s2
93 kmps2tog = 1000 / g0; %(km/s2) * (1000 m/km) / (9.80665 m/s2)
94 uCLaugg = uCLaug * kmps2tog; %now in units of g
95

96 %% Part 2, Step 5 - Luenberger Observer
97 %Select observer poles
98 polesluen = 5 * real(poles(1:4));
99

100 %Compute Observer Gain
101 L = place(A’, C’, polesluen)’;
102

103 %Extract feedback part from augmented gain
104 Kx = Kaug(:, 1:4); %Feedback gains
105 Ki = Kaug(:, 5:6); %Integrator gains
106

107 %Form Augmented Matrices
108 Aclaug = [A - B*Kx, B*Kx ;...
109 zeros(4), A - L*C];
110 Bclaug = [B*Ki; zeros(4, size(Ki, 2))];
111 Cclaug = [C, zeros(size(C, 1), 4)];
112 Dclaug = zeros(size(Cclaug, 1), size(Bclaug, 2));
113

114 %Case 1 - Zero initial observer error
115 z0case1 = [xnom; zeros(4, 1)];

11

116

117 %Case 2: Non-zero observer error
118 percentError = 0.5;
119 z0case2 = [xnom; xnom*percentError];
120

121 %Simulate Case 1
122 sysObs1 = ss(Aclaug, Bclaug, Cclaug, Dclaug);
123 [, , zObs1] = lsim(sysObs1, rhist, t, z0case1);
124 xtruecase1 = zObs1(:,1:4);
125 ehistcase1 = zObs1(:,5:8);
126 xhatcase1 = xtruecase1 - ehistcase1;
127 esterrcase1 = xtruecase1 - xhatcase1;
128

129 %Simulate Case 2
130 sysObs2 = ss(Aclaug, Bclaug, Cclaug, Dclaug);
131 [, , zObs2] = lsim(sysObs2, rhist, t, z0case2);
132 xtruecase2 = zObs2(:,1:4);
133 ehistcase2 = zObs2(:,5:8);
134 xhatcase2 = xtruecase2 - ehistcase2;
135 esterrcase2 = xtruecase2 - xhatcase2;
136

137 %Display Observer Poles
138 eigobs = eig(A - L*C);
139 disp(”Observer poles (A - L*C):”);
140 disp(eigobs);
141

142 %% Part 2, Step 6 - Infinite-Horizon Cost Function
143 %Define Max Allowable Deviations
144 xmaxdeltar = 0.20 * deltar0; %km (20% of initial radial offset)
145 xmaxdeltardot = 1.0; %km/s
146 xmaxdeltatheta = 0.20 * deltatheta0; %rad (20% of initial angle offset)
147 xmaxdeltathetadot = 1e0; %rad/s
148

149 xmaxvec = [xmaxdeltar; xmaxdeltardot; xmaxdeltatheta; xmaxdeltathetadot];
150

151 %Define Max allowable control accelerations
152 umaxg = 0.01; %Max acceleration = 0.01 g
153 umaxkmps2 = umaxg * g0 / 1000; %Convert to km/s2
154 umaxvec = umaxkmps2 * [1; 1];
155

156 %Define relative importance of each state (sum to 1)
157 alphastates = [0.10; 0.05; 0.80; 0.05];
158

159 %Define relative importance of each input (sum to 1)
160 betainputs = [0.5; 0.5]; %Equal weight thrusters
161

162 %Define overall tradeoff between state deviations and control effort
163 rho = 80;
164

165 %Build Q and R via Bryson’s Rule
166 Qlqr = diag((alphastates ./ xmaxvec).2);
167 Rlqr = rho * diag((betainputs ./ umaxvec).2);
168

169 %Calculate optimal gains
170 [Klqr, Slqr,] = lqr(A, B, Qlqr, Rlqr);
171

172 %Compare closed-loop poles with manual design
173 eigmanual = eig(A - B*Kx);
174 eiglqr = eig(A - B*Klqr);

12

175

176 disp(”Manual closed-loop poles (A - B*Kx):”);
177 disp(eigmanual);
178

179 disp(”LQR closed-loop poles (A - B*Klqr):”);
180 disp(eiglqr);
181

182 %Create Luenberger Observer Augmented Dynamics
183 Acllqrobs = [A - B*Klqr, B * Klqr;...
184 zeros(4), A - L*C];
185 Bcllqrobs = zeros(8, size(rhist, 2));
186 Ccllqrobs = eye(8);
187 Dcllqrobs = zeros(8, size(rhist,2));
188

189 %Create State Space Model Object
190 syslqrobs = ss(Acllqrobs, Bcllqrobs, Ccllqrobs, Dcllqrobs);
191

192 %Create 0% initial state error in observer for comparing response
193 percentError = 0.0;
194 z0lqr = [xnom; xnom * percentError];
195

196 %Simulate LQR and observer closed loop
197 [, , zlqr] = lsim(syslqrobs, rhist, t, z0lqr);
198

199 %Pull out true and estimated states
200 xtruelqr = zlqr(:, 1:4); %True States
201 ehistlqr = zlqr(:, 5:8); %Error States
202 xhatlqr = xtruelqr - ehistlqr; %Estimated = True - Error
203

204 %Compute LQR control forcing based on estimated state [Acceleration = km/s2]
205 ulqr = -(Klqr * xhatlqr’)’;
206

207 %Covert to Gs of acceleration
208 ulqrg = ulqr * kmps2tog;
209

210 %Manual controller (From Part 4) control based on estimated state (case 2 from
part 5)

211 umanual = uCLaug’;
212 umanualg = umanual * kmps2tog;
213

214 %Numerically integrate actuation acceleration to get ”Total Energy”-ish
comparison

215 Emanual = trapz(t, sum(umanual.2, 2)); %Manual state feedback
216 Elqr = trapz(t, sum(ulqr.2, 2)); %LQR state feedback
217

218 disp(”Manual controller energy: ” + Emanual);
219 disp(”LQR controller energy: ” + Elqr);
220

221 %Run LQR with 50% initial observer error
222 percentError = 0.5;
223 z0lqrerr = [xnom; xnom*percentError];
224 [,,zlqrerr] = lsim(syslqrobs,rhist,t,z0lqrerr);
225 xtruelqrerr = zlqrerr(:,1:4);
226

227

228 %% Produce Open Loop Response Figures
229 figure(’Color’,’w’);
230 tiles = tiledlayout(’flow’);
231

13

232 %Overall title for the tiled layout
233 axisFontSize = 16;
234 plotTitleFontSize = 18;
235 figureTitleFontSize = 22;
236 title(tiles, ’Open-Loop Perturbation Response Over Two Orbits’, ”Interpreter”,

”Latex”, ”FontSize”, figureTitleFontSize);
237

238 %---RADIUS DEVIATION VERSUS TIME---
239 nexttile;
240 plot(tOut(tOut¡2*Torbit), y((tOut¡2*Torbit),1), ’LineWidth’, 2);
241 grid on;
242 title(’Radius Deviation vs Time’, ”Interpreter”,”Latex”, ”FontSize”,

plotTitleFontSize);
243 ylabel(’$“delta r$ (km)’, ”Interpreter”,”Latex”, ”FontSize”, axisFontSize);
244 xlabel(’Time (s)’, ”Interpreter”,”Latex”, ”FontSize”, axisFontSize);
245 axis padded;
246 xlim([0, 2*Torbit]);
247

248 %---ANGLE DEVIATION VERSUS TIME---
249 nexttile;
250 plot(tOut(tOut¡2*Torbit), y((tOut¡2*Torbit),2), ’LineWidth’, 2);
251 grid on;
252 title(’Angle Deviation vs Time’, ”Interpreter”,”Latex”, ”FontSize”,

plotTitleFontSize);
253 ylabel(’$“delta “theta$ (rad)’, ”Interpreter”,”Latex”, ”FontSize”, axisFontSize);
254 xlabel(’Time (s)’, ”Interpreter”,”Latex”, ”FontSize”, axisFontSize);
255 axis padded;
256 xlim([0, 2*Torbit]);
257

258 %% Produce Response Figure
259 figure(’Color’,’w’);
260 tiles = tiledlayout(’flow’);
261

262 %Overall title for the tiled layout
263 axisFontSize = 16;
264 plotTitleFontSize = 18;
265 figureTitleFontSize = 22;
266 title(tiles, ’Close-Loop Perturbation Response Over Two Orbits’, ”Interpreter”,

”Latex”, ”FontSize”, figureTitleFontSize);
267

268 %-- RADIUS DEVIATION VERUS TIME PLOT --
269 nexttile;
270

271 %Add in Response Boundaries
272 radialStep = deltar0;
273 plotColors = orderedcolors(”gem”);
274 patch([0, Torbit, Torbit, 0], [0, 0, radialStep * 0.05, radialStep*0.05],

plotColors(3, :), ”FaceAlpha”, 0.2, ”EdgeColor”, ”none”);
275 hold on; box on;
276 patch([0, tOut(end), tOut(end), Torbit, Torbit, 0], [-radialStep*0.2,

-radialStep*0.2, radialStep*0.2, radialStep*0.2, 0, 0], plotColors(4, :),
”FaceAlpha”, 0.2, ”EdgeColor”, ”none”)

277 yline(0, ’--’, ’LineWidth’, 1.5, ”FontSize”, 14);
278 xline(Torbit, ’-’, ”1x Orbital Period”, ”LabelHorizontalAlignment”,”center”,

”LabelVerticalAlignment”,”top”, ”Interpreter”, ”latex”, ”LineWidth”, 1,
”FontSize”, 14);

279 %xline(2*Torbit, ’-’, ”2x Orbital Period”, ”LabelHorizontalAlignment”,”left”,
”LabelVerticalAlignment”,”top”, ”Interpreter”, ”latex”, ”LineWidth”, 1,
”FontSize”, 14);

14

280 yline(radialStep * 0.05, ’-’, ”$5“%$ Settling Limit”,
”LabelHorizontalAlignment”,”right”, ”LabelVerticalAlignment”,”top”,
”Interpreter”, ”latex”, ”LineWidth”, 1, ”FontSize”, 14);

281 yline(radialStep * 0.20, ’-’, ”$20“%$ Undershoot Limit”,
”LabelHorizontalAlignment”,”right”, ”LabelVerticalAlignment”,”top”,
”Interpreter”, ”latex”, ”LineWidth”, 1, ”FontSize”, 14);

282 yline(radialStep *-0.20, ’-’, ”$20“%$ Overshoot Limit”,
”LabelHorizontalAlignment”,”right”, ”LabelVerticalAlignment”,”bottom”,
”Interpreter”, ”latex”, ”LineWidth”, 1, ”FontSize”, 14);

283

284 %Plot Response Line
285 plot(tOut, yCLaug(:,1), ’LineWidth’, 2);
286

287 %Plot Styling
288 grid on;
289 title(’Radius Deviation vs Time’, ”Interpreter”,”Latex”, ”FontSize”,

plotTitleFontSize);
290 ylabel(’$“delta r$ (km)’, ”Interpreter”,”Latex”, ”FontSize”, axisFontSize);
291 xlabel(’Time (s)’, ”Interpreter”,”Latex”, ”FontSize”, axisFontSize);
292 xlim([tOut(1), tOut(end)]);
293 ylim([radialStep *-0.30, 1.1*abs(radialStep)]);
294

295 %-- ANGLE DEVIATION VERSUS TIME PLOT --
296 nexttile;
297

298 %Add in Response Boundaries
299 angularStep = deltatheta0;
300 plotColors = orderedcolors(”gem”);
301 patch([0, Torbit, Torbit, 0], [0, 0, angularStep * 0.05, angularStep*0.05],

plotColors(3, :), ”FaceAlpha”, 0.2, ”EdgeColor”, ”none”);
302 hold on; box on;
303 patch([0, tOut(end), tOut(end), Torbit, Torbit, 0], [-angularStep*0.2,

-angularStep*0.2, angularStep*0.2, angularStep*0.2, 0, 0], plotColors(4, :),
”FaceAlpha”, 0.2, ”EdgeColor”, ”none”)

304 yline(0, ’--’, ’LineWidth’, 1.5, ”FontSize”, 14);
305 xline(Torbit, ’-’, ”1x Orbital Period”, ”LabelHorizontalAlignment”,”center”,

”LabelVerticalAlignment”,”top”, ”Interpreter”, ”latex”, ”LineWidth”, 1,
”FontSize”, 14);

306 %xline(2*Torbit, ’-’, ”2x Orbital Period”, ”LabelHorizontalAlignment”,”left”,
”LabelVerticalAlignment”,”top”, ”Interpreter”, ”latex”, ”LineWidth”, 1,
”FontSize”, 14);

307 yline(angularStep * 0.05, ’-’, ”$5“%$ Settling Limit”,
”LabelHorizontalAlignment”,”right”, ”LabelVerticalAlignment”,”top”,
”Interpreter”, ”latex”, ”LineWidth”, 1, ”FontSize”, 14);

308 yline(angularStep * 0.20, ’-’, ”$20“%$ Undershoot Limit”,
”LabelHorizontalAlignment”,”right”, ”LabelVerticalAlignment”,”top”,
”Interpreter”, ”latex”, ”LineWidth”, 1, ”FontSize”, 14);

309 yline(angularStep *-0.20, ’-’, ”$20“%$ Overshoot Limit”,
”LabelHorizontalAlignment”,”right”, ”LabelVerticalAlignment”,”bottom”,
”Interpreter”, ”latex”, ”LineWidth”, 1, ”FontSize”, 14);

310

311 %Plot Response Line
312 plot(tOut, yCLaug(:,2), ’LineWidth’, 2);
313

314 %Plot Styling
315 grid on;
316 title(’Angle Deviation vs Time’, ”Interpreter”,”Latex”, ”FontSize”,

plotTitleFontSize);
317 ylabel(’$“delta “theta$ (radians)’, ”Interpreter”,”Latex”, ”FontSize”,

15

axisFontSize);
318 xlabel(’Time (s)’, ”Interpreter”,”Latex”, ”FontSize”, axisFontSize);
319 xlim([tOut(1), tOut(end)]);
320 ylim([angularStep *-0.30, 1.1*abs(angularStep)]);
321

322 %% Produce Output Force Figure
323 figure(’Color’,’w’);
324 tiles = tiledlayout(’flow’);
325

326 %Overall title for the tiled layout
327 axisFontSize = 14;
328 plotTitleFontSize = 16;
329 figureTitleFontSize = 22;
330 title(tiles, ’Close-Loop Thrust Acceleration Response Over Two Orbits’,

”Interpreter”, ”Latex”, ”FontSize”, figureTitleFontSize);
331

332 %---RADIAL FORCING ACCELERATION VERSUS TIME---
333 nexttile;
334 patch([0, tOut(end), tOut(end), 0], [-0.01 -0.01 0.01 0.01], plotColors(5, :),

’FaceAlpha’, 0.1, ’EdgeColor’, ’none’);
335 hold on;
336 plot(tOut, uCLaugg(1,:), ’LineWidth’, 2.0); hold on
337 yline(0.01);
338 yline(-0.01);
339 ylim([-0.02 0.02]);
340

341 %Plot Styling and Labels
342 grid on;
343 title(’Radial Thrust-Generated Acceleration vs Time’, ”Interpreter”,”Latex”,

”FontSize”, plotTitleFontSize);
344 ylabel(’Radial Thrust $“delta u–1$ (g)’, ”Interpreter”,”Latex”, ”FontSize”,

axisFontSize);
345 xlabel(’Time (s)’, ”Interpreter”,”Latex”, ”FontSize”, axisFontSize);
346 xlim([tOut(1), tOut(end)]);
347

348 %---IN-TRACK FORCING ACCLERATION VERSUS TIME---
349 nexttile;
350 patch([0, tOut(end), tOut(end), 0], [-0.01 -0.01 0.01 0.01], plotColors(5, :),

’FaceAlpha’, 0.1, ’EdgeColor’, ’none’);
351 hold on;
352 plot(tOut, uCLaugg(2,:), ’LineWidth’, 2.0); hold on
353 yline(0.01);
354 yline(-0.01);
355 ylim([-0.02 0.02]);
356

357 %Plot Styling and Labels
358 grid on;
359 title(’In-Track Thrust-Generated Acceleration vs Time’, ”Interpreter”,”Latex”,

”FontSize”, plotTitleFontSize);
360 ylabel(’In-Track Thrust $“delta u–2$ (g)’, ”Interpreter”,”Latex”, ”FontSize”,

axisFontSize);
361 xlabel(’Time (s)’, ”Interpreter”,”Latex”, ”FontSize”, axisFontSize);
362 xlim([tOut(1), tOut(end)]);
363

364 %---TOTAL FORCING ACCELERATION VERSUS TIME---
365 nexttile(tiles, ”south”, [1, 2]);
366 umagg = sqrt(uCLaugg(1,:).2 + uCLaugg(2,:).2); %Forcing magnitude in g
367

368 %Plot Bounding Box

16

369 plotColors = orderedcolors(”gem”);
370 patch([0, tOut(end), tOut(end), 0], [0 0 0.01 0.01], plotColors(5, :),

’FaceAlpha’, 0.1, ’EdgeColor’, ’none’);
371 hold on;
372

373 %Plot Line
374 plot(t, umagg, ’LineWidth’, 2.0);
375

376 %Add in Boundaries
377 yline(0.01, ’-’, ”Maximum Acceleration = 0.01G”, ”Interpreter”, ”Latex”,

’LabelHorizontalAlignment’,’left’, ’LabelVerticalAlignment’,’top’);
378 yline(0, ’-’);
379

380 %Plot Styling
381 grid on;
382 title(’Total Thrust Acceleration Magnitude vs Time’, ”Interpreter”,”Latex”,

”FontSize”, plotTitleFontSize);
383 ylabel(’Total Thrust $“—“mathbf–u“—$ (g)’, ”Interpreter”,”Latex”, ”FontSize”,

axisFontSize);
384 xlabel(’Time (s)’, ”Interpreter”,”Latex”, ”FontSize”, axisFontSize);
385 ylim([-0.001, 0.02]);
386 xlim([tOut(1), tOut(end)]);
387

388 %% Observer Performance Plots
389 figure(’Color’,’w’);
390 tiles = tiledlayout(’flow’, ’TileSpacing’,’compact’,’Padding’,’compact’);
391 axisFontSize = 16;
392 plotTitleFontSize = 18;
393 figureTitleFontSize = 22;
394 timeEnd = Torbit * 2;
395

396 %Set Figure Window Title
397 title(tiles, ’Observer Convergence from Non-zero Initial Error’,

”Interpreter”,”Latex”,”FontSize”,figureTitleFontSize);
398 plotColors = orderedcolors(”gem”);
399

400 %---Delta R Plot---
401 nexttile;
402

403 %Plot the True State
404 plot(t, xtruecase2(:, 1), ’-’, ’Color’, plotColors(1, :), ’LineWidth’, 2.0);

hold on;
405

406 %Plot Estimated Case
407 plot(t, xhatcase2(:, 1), ’-’, ’Color’, plotColors(2, :), ’LineWidth’, 2.0);
408

409 %Plot Styling
410 ylabel(”$“delta r$ (km)”, ”Interpreter”,”Latex”,”FontSize”,axisFontSize);
411 xlabel(’Time (sec)’, ”Interpreter”,”Latex”,”FontSize”,axisFontSize);
412 title(’Radial Deviation State’, ”Interpreter”,”Latex”,

”FontSize”,plotTitleFontSize);
413 box on; grid on; axis padded;
414 xlim([0, timeEnd]);
415

416 %---Delta Rdot Plot---
417 nexttile;
418

419 %Plot the True State
420 plot(t, xtruecase2(:, 2), ’-’, ’Color’, plotColors(1, :), ’LineWidth’, 2.0);

17

hold on;
421

422 %Plot Estimated Case
423 plot(t, xhatcase2(:, 2), ’-’, ’Color’, plotColors(2, :), ’LineWidth’, 2.0);
424

425 %Plot Styling
426 ylabel(”$“delta “dot r$ (km/s)”, ”Interpreter”,”Latex”,”FontSize”,axisFontSize);
427 xlabel(’Time (sec)’, ”Interpreter”,”Latex”,”FontSize”,axisFontSize);
428 title(’Radial Velocity State’, ”Interpreter”,”Latex”,

”FontSize”,plotTitleFontSize);
429 box on; grid on; axis padded;
430 xlim([0, timeEnd]);
431

432 %---Delta Theta Plot---
433 nexttile;
434

435 %Plot the True State
436 plot(t, xtruecase2(:, 3), ’-’, ’Color’, plotColors(1, :), ’LineWidth’, 2.0);

hold on;
437

438 %Plot Estimated Case
439 plot(t, xhatcase2(:, 3), ’-’, ’Color’, plotColors(2, :), ’LineWidth’, 2.0);
440

441 %Plot Styling
442 ylabel(”$“delta “theta$ (rad)”, ”Interpreter”,”Latex”,”FontSize”,axisFontSize);
443 xlabel(’Time (sec)’, ”Interpreter”,”Latex”,”FontSize”,axisFontSize);
444 title(’Angular Position State’, ”Interpreter”,”Latex”,

”FontSize”,plotTitleFontSize);
445 box on; grid on; axis padded;
446 xlim([0, timeEnd]);
447

448 %---Delta Thetadot Plot---
449 nexttile;
450

451 %Plot the True State
452 plot(t, xtruecase2(:, 4), ’-’, ’Color’, plotColors(1, :), ’LineWidth’, 2.0);

hold on;
453

454 %Plot Estimated Case
455 plot(t, xhatcase2(:, 4), ’-’, ’Color’, plotColors(2, :), ’LineWidth’, 2.0);
456

457 %Plot Styling
458 ylabel(”$“delta “dot “theta$ (rad/s)”,

”Interpreter”,”Latex”,”FontSize”,axisFontSize);
459 xlabel(’Time (sec)’, ”Interpreter”,”Latex”,”FontSize”,axisFontSize);
460 title(’Angular Velocity State’, ”Interpreter”,”Latex”,

”FontSize”,plotTitleFontSize);
461 box on; grid on; axis padded;
462 xlim([0, timeEnd]);
463 legend([”True State”,”Estimated State”],”Interpreter”,”Latex”,’Location’,’best’,

”FontSize”, axisFontSize);
464

465 %% Observer Performance Plots (Zero Initial Error)
466 figure(’Color’,’w’);
467 tiles = tiledlayout(’flow’, ’TileSpacing’,’compact’,’Padding’,’compact’);
468 axisFontSize = 16;
469 plotTitleFontSize = 18;
470 figureTitleFontSize = 22;
471 timeEnd = Torbit * 2;

18

472

473 title(tiles, ’Observer Convergence from Zero Initial Error’,
”Interpreter”,”Latex”,”FontSize”,figureTitleFontSize);

474 plotColors = orderedcolors(”gem”);
475

476 %---Delta R Plot---
477 nexttile;
478 plot(t, xtruecase1(:, 1), ’-’, ’Color’, plotColors(1, :), ’LineWidth’, 2.0);

hold on;
479 plot(t, xhatcase1(:, 1), ’-’, ’Color’, plotColors(2, :), ’LineWidth’, 2.0);
480 ylabel(”$“delta r$ (km)”, ”Interpreter”,”Latex”,”FontSize”,axisFontSize);
481 xlabel(’Time (sec)’, ”Interpreter”,”Latex”,”FontSize”,axisFontSize);
482 title(’Radial Deviation State’,

”Interpreter”,”Latex”,”FontSize”,plotTitleFontSize);
483 box on; grid on; axis padded;
484 xlim([0, timeEnd]);
485

486 %---Delta rdot Plot---
487 nexttile;
488 plot(t, xtruecase1(:, 2), ’-’, ’Color’, plotColors(1, :), ’LineWidth’, 2.0);

hold on;
489 plot(t, xhatcase1(:, 2), ’-’, ’Color’, plotColors(2, :), ’LineWidth’, 2.0);
490 ylabel(”$“delta “dot r$ (km/s)”, ”Interpreter”,”Latex”,”FontSize”,axisFontSize);
491 xlabel(’Time (sec)’, ”Interpreter”,”Latex”,”FontSize”,axisFontSize);
492 title(’Radial Velocity State’,

”Interpreter”,”Latex”,”FontSize”,plotTitleFontSize);
493 box on; grid on; axis padded;
494 xlim([0, timeEnd]);
495

496 %---Delta theta Plot---
497 nexttile;
498 plot(t, xtruecase1(:, 3), ’-’, ’Color’, plotColors(1, :), ’LineWidth’, 2.0);

hold on;
499 plot(t, xhatcase1(:, 3), ’-’, ’Color’, plotColors(2, :), ’LineWidth’, 2.0);
500 ylabel(”$“delta “theta$ (rad)”, ”Interpreter”,”Latex”,”FontSize”,axisFontSize);
501 xlabel(’Time (sec)’, ”Interpreter”,”Latex”,”FontSize”,axisFontSize);
502 title(’Angular Position State’,

”Interpreter”,”Latex”,”FontSize”,plotTitleFontSize);
503 box on; grid on; axis padded;
504 xlim([0, timeEnd]);
505

506 %---Delta thetadot Plot---
507 nexttile;
508 plot(t, xtruecase1(:, 4), ’-’, ’Color’, plotColors(1, :), ’LineWidth’, 2.0);

hold on;
509 plot(t, xhatcase1(:, 4), ’-’, ’Color’, plotColors(2, :), ’LineWidth’, 2.0);
510 ylabel(”$“delta “dot “theta$ (rad/s)”,

”Interpreter”,”Latex”,”FontSize”,axisFontSize);
511 xlabel(’Time (sec)’, ”Interpreter”,”Latex”,”FontSize”,axisFontSize);
512 title(’Angular Velocity State’,

”Interpreter”,”Latex”,”FontSize”,plotTitleFontSize);
513 box on; grid on; axis padded;
514 xlim([0, timeEnd]);
515 legend([”True State”,”Estimated State”],

”Interpreter”,”Latex”,’Location’,’best’, ”FontSize”, axisFontSize);
516

517

518 %% Estimation Error Norms Plots
519 enormcase1 = vecnorm(esterrcase1,2,2); %Case 1 Total Error Magnitude

19

520 enormcase2 = vecnorm(esterrcase2,2,2); %Case 2 Total Error Magnitude
521

522 figure(’Color’,’w’);
523

524 axisFontSize = 16;
525 plotTitleFontSize = 18;
526 figureTitleFontSize = 22;
527 title(”State Estimation Error Norms”, ”Interpreter”,”latex”, ”FontSize”,

figureTitleFontSize);
528

529 %Add Error Lines
530 plot(t, enormcase1, ”-”, ”Color”, plotColors(1,:), ”LineWidth”, 2.0); hold on;
531 plot(t, enormcase2, ”-”, ”Color”, plotColors(2,:), ”LineWidth”, 2.0);
532

533 %Plot Styling
534 xlabel(”Time (seconds)”, ”Interpreter”,”Latex”,”FontSize”,axisFontSize);
535 ylabel(”$“—e(t)“—2$”, ”Interpreter”,”Latex”,”FontSize”,axisFontSize);
536 title(”Observer Error Norm (Zero vs Non-zero Initial Error)”,

”Interpreter”,”Latex”,”FontSize”,plotTitleFontSize);
537 legend([”Zero Initial Error”, ”50“%Initial Error”],

”Interpreter”,”Latex”,’Location’,’NorthEast’);
538 box on; grid on;
539

540 %% Manual vs LQR Closed-Loop Response (Radial & Angular Positions) Plots
541 figure(’Color’,’w’);
542 tiles = tiledlayout(’flow’);
543

544 axisFontSize = 16;
545 plotTitleFontSize = 18;
546 figureTitleFontSize = 22;
547 title(tiles, ’Manual vs LQR Closed-Loop Response’,

”Interpreter”,”Latex”,”FontSize”,figureTitleFontSize);
548

549 plotColors = orderedcolors(”gem”);
550

551 %---------------- RADIAL DEVIATION ----------------%
552 nexttile;
553

554 radialStep = deltar0;
555

556 %Settling / overshoot bands
557 patch([0, Torbit, Torbit, 0], [0, 0, radialStep * 0.05, radialStep * 0.05],

plotColors(3, :), ”FaceAlpha”, 0.2, ”EdgeColor”, ”none”);
558 hold on; box on;
559 patch([0, t(end), t(end), Torbit, Torbit, 0], [-radialStep * 0.2, -radialStep *

0.2, radialStep * 0.2, radialStep * 0.2, 0, 0], plotColors(4, :),
”FaceAlpha”, 0.2, ”EdgeColor”, ”none”);

560

561 yline(0, ’--’, ’LineWidth’, 1.5, ”FontSize”, 14);
562 xline(Torbit, ’-’, ”1x Orbital Period”, ”LabelHorizontalAlignment”,”center”,

”LabelVerticalAlignment”,”top”, ”Interpreter”,”latex”, ”LineWidth”,1,
”FontSize”,14);

563 yline(radialStep * 0.05, ’-’, ”$5“%$ Settling Limit”,
”LabelHorizontalAlignment”,”right”, ”LabelVerticalAlignment”,”top”,
”Interpreter”,”latex”, ”LineWidth”,1, ”FontSize”,14);

564 yline(radialStep * 0.20, ’-’, ”$20“%$ Undershoot Limit”,
”LabelHorizontalAlignment”,”right”, ”LabelVerticalAlignment”,”top”,
”Interpreter”,”latex”, ”LineWidth”,1, ”FontSize”,14);

565 yline(-radialStep * 0.20, ’-’, ”$20“%$ Overshoot Limit”,

20

”LabelHorizontalAlignment”,”right”, ”LabelVerticalAlignment”,”bottom”,
”Interpreter”,”latex”, ”LineWidth”,1, ”FontSize”,14);

566

567 %Plot Response Lines
568 plot(t, yCLaug(:,1), ’LineWidth’, 2.0, ’Color’, plotColors(1,:)); hold on;
569 plot(t, xtruelqr(:,1), ’-’, ’LineWidth’, 2.0, ’Color’, plotColors(2,:));
570

571 %Plot Styling
572 grid on;
573 title(’Radial Deviation vs Time’, ”Interpreter”,”Latex”,

”FontSize”,plotTitleFontSize);
574 ylabel(’$“delta r$ (km)’, ”Interpreter”,”Latex”, ”FontSize”,axisFontSize);
575 xlabel(’Time (s)’, ”Interpreter”,”Latex”, ”FontSize”,axisFontSize);
576 xlim([t(1), t(end)]);
577 ylim([radialStep * -0.30, 1.1 * abs(radialStep)]);
578

579 %---------------- ANGULAR POSITION ----------------%
580 nexttile;
581

582 angularStep = deltatheta0;
583

584 %Settling / overshoot bands (same as previous plots)
585 patch([0, Torbit, Torbit, 0], [0, 0, angularStep * 0.05, angularStep * 0.05],

plotColors(3, :), ”FaceAlpha”, 0.2, ”EdgeColor”, ”none”);
586 hold on; box on;
587 patch([0, t(end), t(end), Torbit, Torbit, 0], [-angularStep * 0.2, -angularStep

* 0.2, angularStep * 0.2, angularStep * 0.2, 0, 0], plotColors(4, :),
”FaceAlpha”, 0.2, ”EdgeColor”, ”none”);

588

589 yline(0, ’--’, ’LineWidth’, 1.5, ”FontSize”,14);
590 xline(Torbit, ’-’, ”1x Orbital Period”, ”LabelHorizontalAlignment”,”center”,

”LabelVerticalAlignment”,”top”, ”Interpreter”,”latex”, ”LineWidth”,1,
”FontSize”,14);

591 yline(angularStep * 0.05, ’-’, ”$5“%$ Settling Limit”,
”LabelHorizontalAlignment”,”right”, ”LabelVerticalAlignment”,”top”,
”Interpreter”,”latex”, ”LineWidth”,1, ”FontSize”,14);

592 yline(angularStep * 0.20, ’-’, ”$20“%$ Undershoot Limit”,
”LabelHorizontalAlignment”,”right”, ”LabelVerticalAlignment”,”top”,
”Interpreter”,”latex”, ”LineWidth”,1, ”FontSize”,14);

593 yline(-angularStep * 0.20, ’-’, ”$20“%$ Overshoot Limit”,
”LabelHorizontalAlignment”,”right”, ”LabelVerticalAlignment”,”bottom”,
”Interpreter”,”latex”, ”LineWidth”,1, ”FontSize”,14);

594

595 %Plot Response Lines
596 h(1) = plot(t, yCLaug(:,2), ’LineWidth’, 2.0, ’Color’, plotColors(1,:)); hold

on; %Manual Placement
597 h(2) = plot(t, xtruelqr(:,3), ’-’, ’LineWidth’, 2.0, ’Color’, plotColors(2,:));

%LQR Placement
598

599 %PLot Styling
600 grid on;
601 title(’Angular Position vs Time’, ”Interpreter”,”Latex”,

”FontSize”,plotTitleFontSize);
602 ylabel(’$“delta “theta$ (rad)’, ”Interpreter”,”Latex”, ”FontSize”,axisFontSize);
603 xlabel(’Time (s)’, ”Interpreter”,”Latex”, ”FontSize”,axisFontSize);
604 xlim([t(1), t(end)]);
605 ylim([angularStep * -0.30, 1.1 * abs(angularStep)]);
606 legend(h, [”Manual (Part 4)”, ”LQR (Part 6)”],

”Interpreter”,”Latex”,’Location’,’NorthEast’, ”FontSize”, axisFontSize);

21

607

608 %% Manual vs LQR Closed-Loop Acceleration Plots
609 figure(’Color’,’w’);
610 tiles = tiledlayout(’flow’);
611 axisFontSize = 14;
612 plotTitleFontSize = 16;
613 figureTitleFontSize = 22;
614

615 title(tiles, ’Manual vs LQR Thrust Acceleration Response’,
”Interpreter”,”Latex”, ”FontSize”, figureTitleFontSize);

616 plotColors = orderedcolors(”gem”);
617

618 %---------------- RADIAL THRUST ACCELERATION ----------------%
619 nexttile;
620

621 %Shaded allowable band +/- 0.01 g
622 patch([0, t(end), t(end), 0], [-0.01, -0.01, 0.01, 0.01], plotColors(5, :),

’FaceAlpha’, 0.1, ’EdgeColor’, ’none’);
623 hold on;
624

625 %Plot Lines
626 plot(t, umanualg(:,1), ’LineWidth’, 2.0, ’Color’, plotColors(1,:)); %Manual Pole

Placement Response
627 plot(t, ulqrg(:,1), ’LineWidth’, 2.0, ’Color’, plotColors(2,:)); %LQR Pole

PLacement Response
628

629 %Add in Bounding Lines / Limits
630 yline(0.01, ’-’, ”0.01 g Limit”, ”Interpreter”,”Latex”,

”LabelHorizontalAlignment”,”left”, ”LabelVerticalAlignment”,”top”);
631 yline(-0.01, ’-’, ”Interpreter”,”Latex”);
632 yline(0, ’-’, ”LineWidth”, 1.0);
633

634 %Plot Styling
635 ylim([-0.02, 0.02]);
636 xlim([t(1), t(end)]);
637 grid on; box on;
638 title(’Radial Thrust Acceleration’, ”Interpreter”,”Latex”, ”FontSize”,

plotTitleFontSize);
639 ylabel(’$“delta u–1$ (g)’, ”Interpreter”,”Latex”, ”FontSize”, axisFontSize);
640 xlabel(’Time (s)’, ”Interpreter”,”Latex”, ”FontSize”, axisFontSize);
641

642 %---------------- IN-TRACK THRUST ACCELERATION ----------------%
643 nexttile;
644

645 %Shaded allowable band +/- 0.01 g
646 patch([0, t(end), t(end), 0], [-0.01, -0.01, 0.01, 0.01], plotColors(5, :),

’FaceAlpha’, 0.1, ’EdgeColor’, ’none’);
647 hold on;
648

649 %Plot Lines
650 h(1) = plot(t, umanualg(:,2), ’LineWidth’, 2.0, ’Color’, plotColors(1,:));
651 h(2) = plot(t, ulqrg(:,2), ’LineWidth’, 2.0, ’Color’, plotColors(2,:));
652

653 %Add in Bounding Lines / Limits
654 yline(0.01, ’-’, ”0.01 g Limit”, ”Interpreter”,”Latex”,

”LabelHorizontalAlignment”,”left”, ”LabelVerticalAlignment”,”top”);
655 yline(-0.01, ’-’, ”Interpreter”,”Latex”);
656 yline(0, ’-’, ”LineWidth”, 1.0);
657

22

658 %Plot Styling
659 ylim([-0.02, 0.02]);
660 xlim([t(1), t(end)]);
661 grid on; box on;
662 title(’In-Track Thrust Acceleration’, ”Interpreter”,”Latex”, ”FontSize”,

plotTitleFontSize);
663 ylabel(’$“delta u–2$ (g)’, ”Interpreter”,”Latex”, ”FontSize”, axisFontSize);
664 xlabel(’Time (s)’, ”Interpreter”,”Latex”, ”FontSize”, axisFontSize);
665 legend(h, [”Manual (Part 4)”, ”LQR (Part 6)”], ”Interpreter”,”Latex”,

’Location’,’SouthEast’, ”FontSize”, axisFontSize);
666

667 %---------------- TOTAL THRUST ACCELERATION MAGNITUDE ----------------%
668 nexttile(tiles, ”south”, [1, 2]);
669

670 %Calculate Total Forcing Mangitude
671 umagmanualg = sqrt(umanualg(:,1).2 + umanualg(:,2).2);
672 umaglqrg = sqrt(ulqrg(:,1).2 + ulqrg(:,2).2);
673

674 %Shaded allowable band +/- 0.01 g
675 patch([0, t(end), t(end), 0], [0, 0, 0.01, 0.01], plotColors(5, :), ’FaceAlpha’,

0.1, ’EdgeColor’, ’none’);
676 hold on;
677

678 %Plot Lines
679 plot(t, umagmanualg, ’LineWidth’, 2.0, ’Color’, plotColors(1,:));
680 plot(t, umaglqrg, ’LineWidth’, 2.0, ’Color’, plotColors(2,:));
681

682 %Add in Bounding Lines / Limits
683 yline(0.01, ’-’, ”0.01 g Limit”, ”Interpreter”,”Latex”,

”LabelHorizontalAlignment”,”left”, ”LabelVerticalAlignment”,”top”);
684 yline(0, ’-’, ”LineWidth”, 1.0);
685

686 %Plot Styling
687 ylim([-0.001, 0.02]);
688 xlim([t(1), t(end)]);
689 grid on; box on;
690 title(’Total Thrust Acceleration Magnitude’, ”Interpreter”,”Latex”, ”FontSize”,

plotTitleFontSize);
691 ylabel(’$“—“mathbf–u“—$ (g)’, ”Interpreter”,”Latex”, ”FontSize”, axisFontSize);
692 xlabel(’Time (s)’, ”Interpreter”,”Latex”, ”FontSize”, axisFontSize);
693

694 %% Manual Controller: Full-State vs Manual+Observer Closed-Loop Response
695 figure(’Color’,’w’);
696 tiles = tiledlayout(’flow’);
697 axisFontSize = 16;
698 plotTitleFontSize = 18;
699 figureTitleFontSize = 22;
700 title(tiles,’Manual Full-State vs Manual+Observer Closed-Loop Response’,

”Interpreter”,”Latex”,”FontSize”,figureTitleFontSize);
701 plotColors = orderedcolors(”gem”);
702

703 %---RADIAL DEVIATION---%
704 nexttile;
705 radialStep = deltar0;
706

707 %Add in shaded allowance band
708 patch([0,Torbit,Torbit,0],[0,0,radialStep*0.05,radialStep*0.05],

plotColors(3,:),”FaceAlpha”,0.2,”EdgeColor”,”none”);
709 hold on;

23

710 patch([0,t(end),t(end),Torbit,Torbit,0],
[-radialStep*0.2,-radialStep*0.2,radialStep*0.2,radialStep*0.2,0,0],
plotColors(4,:),”FaceAlpha”,0.2,”EdgeColor”,”none”);

711 yline(0,’--’,’LineWidth’,1.5,”FontSize”,14);
712 xline(Torbit,’-’,”1x Orbital Period”, ”LabelHorizontalAlignment”,”center”,

”LabelVerticalAlignment”,”top”,
”Interpreter”,”latex”,”LineWidth”,1,”FontSize”,14);

713 yline(radialStep*0.05,’-’,”$5“%$ Settling Limit”,
”LabelHorizontalAlignment”,”right”, ”LabelVerticalAlignment”,”top”,
”Interpreter”,”latex”,”LineWidth”,1,”FontSize”,14);

714 yline(radialStep*0.20,’-’,”$20“%$ Undershoot Limit”,
”LabelHorizontalAlignment”,”right”, ”LabelVerticalAlignment”,”top”,
”Interpreter”,”latex”,”LineWidth”,1,”FontSize”,14);

715 yline(-radialStep*0.20,’-’,”$20“%$ Overshoot Limit”,
”LabelHorizontalAlignment”,”right”, ”LabelVerticalAlignment”,”bottom”,
”Interpreter”,”latex”,”LineWidth”,1,”FontSize”,14);

716

717 %Plot Lines
718 plot(t,yCLaug(:,1),’LineWidth’,2.0,”Color”,plotColors(1,:));
719 plot(t,xtruecase1(:,1),’LineWidth’,2.0,”Color”,plotColors(2,:));
720

721 %Plot Styling
722 grid on; box on;
723 title(’Radial Deviation vs

Time’,”Interpreter”,”Latex”,”FontSize”,plotTitleFontSize);
724 ylabel(’$“delta r$ (km)’,”Interpreter”,”Latex”,”FontSize”,axisFontSize);
725 xlabel(’Time (s)’,”Interpreter”,”Latex”,”FontSize”,axisFontSize);
726 xlim([t(1),t(end)]);
727 ylim([radialStep*-0.30,1.1*abs(radialStep)]);
728

729 %---ANGULAR POSITION---%
730 nexttile;
731 angularStep = deltatheta0;
732

733 %Add in shaded allowance band
734 patch([0,Torbit,Torbit,0],[0,0,angularStep*0.05,angularStep*0.05],

plotColors(3,:),”FaceAlpha”,0.2,”EdgeColor”,”none”);
735 hold on;
736 patch([0,t(end),t(end),Torbit,Torbit,0],

[-angularStep*0.2,-angularStep*0.2,angularStep*0.2,angularStep*0.2,0,0],
plotColors(4,:),”FaceAlpha”,0.2,”EdgeColor”,”none”);

737 yline(0,’--’,’LineWidth’,1.5,”FontSize”,14);
738 xline(Torbit,’-’,”1x Orbital Period”, ”LabelHorizontalAlignment”,”center”,

”LabelVerticalAlignment”,”top”,
”Interpreter”,”latex”,”LineWidth”,1,”FontSize”,14);

739 yline(angularStep*0.05,’-’,”$5“%$ Settling Limit”,
”LabelHorizontalAlignment”,”right”, ”LabelVerticalAlignment”,”top”,
”Interpreter”,”latex”,”LineWidth”,1,”FontSize”,14);

740 yline(angularStep*0.20,’-’,”$20“%$ Undershoot Limit”,
”LabelHorizontalAlignment”,”right”, ”LabelVerticalAlignment”,”top”,
”Interpreter”,”latex”,”LineWidth”,1,”FontSize”,14);

741 yline(-angularStep*0.20,’-’,”$20“%$ Overshoot Limit”,
”LabelHorizontalAlignment”,”right”, ”LabelVerticalAlignment”,”bottom”,
”Interpreter”,”latex”,”LineWidth”,1,”FontSize”,14);

742

743 %Plot Lines
744 h(1) = plot(t,yCLaug(:,2),’LineWidth’,2.0,”Color”,plotColors(1,:));
745 h(2) = plot(t,xtruecase1(:,3),’LineWidth’,2.0,”Color”,plotColors(2,:));
746

24

747 %Plot Styling
748 grid on; box on;
749 title(’Angular Position vs

Time’,”Interpreter”,”Latex”,”FontSize”,plotTitleFontSize);
750 ylabel(’$“delta “theta$ (rad)’,”Interpreter”,”Latex”,”FontSize”,axisFontSize);
751 xlabel(’Time (s)’,”Interpreter”,”Latex”,”FontSize”,axisFontSize);
752 xlim([t(1),t(end)]);
753 ylim([angularStep*-0.30,1.1*abs(angularStep)]);
754 legend(h,[”Manual (Full-State)”,”Manual+Observer (Zero Error)”],

”Interpreter”,”Latex”,”Location”,”NorthEast”,”FontSize”,axisFontSize);
755

756

757 %% LQR Closed-Loop Response with Observer Error (0% vs 50% Initial Error)
758 figure(’Color’,’w’);
759 tiles = tiledlayout(’flow’);
760 axisFontSize = 16;
761 plotTitleFontSize = 18;
762 figureTitleFontSize = 22;
763 title(tiles,’LQR Closed-Loop Response with Observer Error’,

”Interpreter”,”Latex”,”FontSize”,figureTitleFontSize);
764 plotColors = orderedcolors(”gem”);
765

766 %---RADIAL DEVIATION---%
767 nexttile;
768 radialStep = deltar0;
769

770 %Add in Allowable Tolerance
771 patch([0,Torbit,Torbit,0],[0,0,radialStep*0.05,radialStep*0.05],

plotColors(3,:),”FaceAlpha”,0.2,”EdgeColor”,”none”);
772 hold on;
773 patch([0,t(end),t(end),Torbit,Torbit,0],

[-radialStep*0.2,-radialStep*0.2,radialStep*0.2,radialStep*0.2,0,0],
plotColors(4,:),”FaceAlpha”,0.2,”EdgeColor”,”none”);

774 yline(0,’--’,’LineWidth’,1.5,”FontSize”,14);
775 xline(Torbit,’-’,”1x Orbital Period”, ”LabelHorizontalAlignment”,”center”,

”LabelVerticalAlignment”,”top”,
”Interpreter”,”latex”,”LineWidth”,1,”FontSize”,14);

776 yline(radialStep*0.05,’-’,”$5“%$ Settling Limit”,
”LabelHorizontalAlignment”,”right”, ”LabelVerticalAlignment”,”top”,
”Interpreter”,”latex”,”LineWidth”,1,”FontSize”,14);

777 yline(radialStep*0.20,’-’,”$20“%$ Undershoot Limit”,
”LabelHorizontalAlignment”,”right”, ”LabelVerticalAlignment”,”top”,
”Interpreter”,”latex”,”LineWidth”,1,”FontSize”,14);

778 yline(-radialStep*0.20,’-’,”$20“%$ Overshoot Limit”,
”LabelHorizontalAlignment”,”right”, ”LabelVerticalAlignment”,”bottom”,
”Interpreter”,”latex”,”LineWidth”,1,”FontSize”,14);

779

780 %Plot Lines
781 plot(t,xtruelqr(:,1),’LineWidth’,2.0,”Color”,plotColors(1,:));
782 plot(t,xtruelqrerr(:,1),’LineWidth’,2.0,”Color”,plotColors(2,:));
783

784 %Plot Styling
785 grid on; box on;
786 title(’Radial Deviation vs Time

(LQR)’,”Interpreter”,”Latex”,”FontSize”,plotTitleFontSize);
787 ylabel(’$“delta r$ (km)’,”Interpreter”,”Latex”,”FontSize”,axisFontSize);
788 xlabel(’Time (s)’,”Interpreter”,”Latex”,”FontSize”,axisFontSize);
789 xlim([t(1),t(end)]);
790 ylim([radialStep*-0.30,1.1*abs(radialStep)]);

25

791

792 %---ANGULAR POSITION---%
793 nexttile;
794 angularStep = deltatheta0;
795

796 %Add in shaded allowable bands
797 patch([0,Torbit,Torbit,0],[0,0,angularStep*0.05,angularStep*0.05],

plotColors(3,:),”FaceAlpha”,0.2,”EdgeColor”,”none”);
798 hold on;
799 patch([0,t(end),t(end),Torbit,Torbit,0],

[-angularStep*0.2,-angularStep*0.2,angularStep*0.2,angularStep*0.2,0,0],
plotColors(4,:),”FaceAlpha”,0.2,”EdgeColor”,”none”);

800 yline(0,’--’,’LineWidth’,1.5,”FontSize”,14);
801 xline(Torbit,’-’,”1x Orbital Period”, ”LabelHorizontalAlignment”,”center”,

”LabelVerticalAlignment”,”top”,
”Interpreter”,”latex”,”LineWidth”,1,”FontSize”,14);

802 yline(angularStep*0.05,’-’,”$5“%$ Settling Limit”,
”LabelHorizontalAlignment”,”right”, ”LabelVerticalAlignment”,”top”,
”Interpreter”,”latex”,”LineWidth”,1,”FontSize”,14);

803 yline(angularStep*0.20,’-’,”$20“%$ Undershoot Limit”,
”LabelHorizontalAlignment”,”right”, ”LabelVerticalAlignment”,”top”,
”Interpreter”,”latex”,”LineWidth”,1,”FontSize”,14);

804 yline(-angularStep*0.20,’-’,”$20“%$ Overshoot Limit”,
”LabelHorizontalAlignment”,”right”, ”LabelVerticalAlignment”,”bottom”,
”Interpreter”,”latex”,”LineWidth”,1,”FontSize”,14);

805 h(1) = plot(t,xtruelqr(:,3),’LineWidth’,2.0,”Color”,plotColors(1,:));
806 h(2) = plot(t,xtruelqrerr(:,3),’LineWidth’,2.0,”Color”,plotColors(2,:));
807

808 %Plot Styling
809 grid on; box on;
810 title(’Angular Position vs Time

(LQR)’,”Interpreter”,”Latex”,”FontSize”,plotTitleFontSize);
811 ylabel(’$“delta “theta$ (rad)’,”Interpreter”,”Latex”,”FontSize”,axisFontSize);
812 xlabel(’Time (s)’,”Interpreter”,”Latex”,”FontSize”,axisFontSize);
813 xlim([t(1),t(end)]);
814 ylim([angularStep*-0.30,1.1*abs(angularStep)]);
815 legend(h,[”LQR (0“% Initial Error)”,”LQR (50“% Initial Error)”],

”Interpreter”,”Latex”,”Location”,”NorthEast”,”FontSize”,axisFontSize);

26

