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2 PART A: LINEAR SYSTEMS ANALYSIS

2.1 System Design and Equation Derivation

The linearized system can be described as follows:

& = Az + Bu (1)
y=Cx+ Du (2)
with the following A, B, C, and D matrices defining the model:
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The state vector and control inputs represent small perturbations about a nominal circular orbit of radius rg:
x=1[0ror 60 60)T,  w=[duy dug)t. (7)

Here, 7 and 6 denote the radial and in-track angular deviations from the reference orbit, while Sr and 66 represent
the corresponding velocity perturbations. The inputs du; and dusy are small thrust-generated accelerations in the
radial and in-track directions. The measured outputs are

y = [6r 660]7,

representing the sensed deviations in orbital radius and angular position.

This linear model arises from a first-order perturbation of the nonlinear orbital dynamics and is valid for small
deviations around the circular reference orbit. It captures the dominant in-plane gravitational coupling and the
effect of radial and tangential thrust on local relative motion. The purpose of the physical system is to maintain
a desired orbit despite disturbances or initial offsets, and the model provides a useful approximation for designing
such controllers.

Several simplifying assumptions limit the fidelity of the state-space representation. The model is strictly two-
dimensional and therefore does not capture out-of-plane motion, plane changes, or cross-coupling between orbital
elements. Earth is treated as a point-mass body, so perturbations such as J, oblateness, atmospheric drag, third-body
effects, and solar radiation pressure are neglected. Additionally, actuator and sensor dynamics are idealized: thrust
saturation, delays, and measurement noise are not represented. Finally, because the equations are linearized, the
model loses accuracy for large deviations where nonlinear orbital mechanics dominate. Despite these limitations,
the system accurately reflects the essential in-plane dynamics needed for analyzing small perturbation stabilization
and orbit-holding performance.
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2.2 Open Loop Response and Closed Loop Requirements

To build on the system description in Part A.1, the control objective for this project is to stabilize the spacecraft
about its nominal circular orbit and to reject small perturbations introduced through initial condition offsets. This is
demonstrated by identifying a system that drives all perturbation states in z(t) to zero so that the radius and in-track
angle remain at their desired reference values.

The desired closed-loop performance is characterized by the following time-domain specifications:

1. All closed-loop poles must lie strictly in the left-half complex plane (asymptotic stability);

2. The radial and angular response y(t) must reach 95% of the reference value within one orbital period;
3. The radial and angular overshoot/undershoot of the desired value must remain below 20%;

4. The radial and angular steady-state tracking error must converge to zero.

5. The spacecraft acceleration should not exceed 0.01 g for the initial deviation given (Assuming 1 Ibf thruster
and 100 lbm spacecraft bus)

These requirements imply that the dominant closed-loop poles must have sufficiently negative real parts to enforce
the required settling time over one orbital period, while having adequate damping to satisfy the overshoot bound.

Before designing feedback, we examine the open-loop dynamics. Using the MATLAB command eig(A) (see
Appendix code), the open-loop poles of the plant are computed to be

A2=0,  Ass==+0.0011569j, 9)

As the real component for all eigenvalues is 0, the open-loop system is marginally stable. The purely imaginary eigen-
values generate undamped oscillations in the in-plane states, while the double eigenvalue at the origin introduces
constant or slowly drifting modes. Because no eigenvalues have negative real parts, perturbations do not naturally
decay, and because no eigenvalues have positive real parts, perturbations do not grow.
To verify the open-loop behavior, we simulate the plant with zero input using MATLAB. The initial perturbation
state is
x(0) = dz = [0.1 km; 0 km/s; 0.5°; 0 rad/s],

which corresponds to a 100 m radial offset and a 0.5° in-track angle error relative to the circular reference orbit. No
control input is applied (u(t) = 0). The resulting output trajectories for this disturbance are shown in Fig. 1.

Open-Loop Perturbation Response Over Two Orbits
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Figure 1: Open Loop Control Response



These responses follow directly from the open-loop pole locations. The radius dr(t) exhibits a clear periodic oscil-
lation with constant amplitude, matching the undamped sinusoidal motion generated by the purely imaginary pole
pair £0.00115697. Because the real parts of these poles are zero, the system has no natural restoring or dissipative
mechanism, so the oscillation neither grows nor decays over time. In contrast, the angular deviation 66(¢) shows a
slow drift mixed with a very small oscillatory component. This behavior is characteristic of the double multiplicity
eigenvalue at the origin, which can produce linear-in-time growth or decay. Importantly, neither state returns to the
nominal value nor diverges catastrophically but instead both remain bounded but non-decaying, exactly as expected
for a marginally stable system. The simulated trajectories therefore match the expected pole structure and illustrate
why state feedback is required to achieve asymptotic stabilization.

2.3 System Reachability and Observability

To determine the reachability (controllability) and observability properties of the plant, we compute the standard
controllability and observability matrices. The controllability matrix is defined as

C=[B AB A’B A’B], (10)
and the MATLAB command ctrb (A, B) confirms that
rank(C) = 4. (11)

Since the rank equals the number of states n = 4, the system is fully reachable. Thus, state feedback can relocate all
open-loop poles, and no uncontrollable modes are present.
The observability matrix is defined as
C
CA
C A2 ) (12)
cA3

and using the MATLAB command obsv (A, C), we obtain

O:

rank(O) = 4. (13)

Because the rank equals the dimension of the state space, the system is fully observable. All state components
influence the measured outputs in a way that allows them to be reconstructed by an observer.

Since both C and O have full rank, the system possesses no unreachable or unobservable subspaces. Therefore,
every pole of the open-loop system may be independently reassigned through state-feedback control, and the poles
can be placed arbitrarily in the left-half plane. This guarantees that the full closed-loop pole set (controller poles and
observer poles) can be shaped to meet the stabilization and transient performance specifications defined in Part A.2.

3 PART B: LINEAR CONTROL DESIGN

3.1 Manual State Feedback Design with Integral Action

In order to design a state feedback controller with a manual design approach that meets the specifications in part
A.2 while enforcing zero steady-state error in the measured output, the integral control error technique from class
is utilized. To begin, the augmented matrices are created, in the case of the system they are:

| A Osxe 66
Auvg = [—C O2x2]|’ Aaug € R77, (14)
_ B 6X2
P = [Osz B € R )
O4x2 ;
P 0



C'aug = [C 02><2] ’ Caug € R2X67 (17)
Daug = 02><2- (18)

U = _Kaug Taug + 7, (19)

where r is a constant reference (here taken as zero perturbation) and
Kaug = [Ka: Kz]

contains both the state feedback gains K, and the integral gains K;.
Closed-loop eigenvalues for the augmented system were selected to satisfy the qualitative requirements from
Part A.2:
« Real parts negative and of order 10~3 s~1, corresponding to settling within approximately one orbital period,
« And sufficient damping to avoid oscillatory behavior and keep overshoot/undershoot within the +20% bands
With desired poles selected, the MATLAB command place () is used to find the augmented feedback K
such that A,u; — BaygKayg has these eigenvalues. After trial and error, the following closed-loop poles are selected:

AcL,manual = {—0.00123, —0.00115, —0.00110, —0.00100, —0.00018, —0.00010} (20)

The resulting simulated closed-loop perturbation response to the initial disturbance of §z = [100 m; 0 km/s; 0.5°; 0 rad/s]
is shown in Fig. 2. Both radial and angular deviations enter the 5% settling band within the single orbital period
(shown by the shaded yellow region) and remain inside of the +20% over/undershoot limits throughout the re-
sponse (shown by the purple shaded region). The response sees a small initial undershoot, which is consistent with
the real, well-damped closed-loop poles in Eq. (20). The integral action guarantees that the steady-state perturbations
converge to zero as required in our design guidelines.

Close-Loop Perturbation Response Over Two Orbits
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Figure 2: Manual Closed Loop Radial and Angular Response

The corresponding thrust accelerations are plotted in Fig. 3. The peak radial thrust is approximately 7.5 x 1072 g,
and the peak in-track thrust is about 1.0 x 10~2 g. The magnitude of the combined forcing vector fits inside the
£0.01 g actuator constraint band (shown by the shaded green region).



Close-Loop Thrust Acceleration Response Over Two Orbits
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Figure 3: Manual Closed Loop Acceleration Forcing Response

This response could be achieved by a single 1 lbf thruster on a 100 Ibm spacecraft with the appropriate engine
throttling and spacecraft attitude control. The thrust decays rapidly after the first fraction of an orbit. As a basic
measure of “actuator energy”, we compute the integral of the required acceleration over time

Tsim
Foan = / u(t)|? dt, (21)
0

where u(t) is in units of km/s?. The numerical value calculated here will be used later to compare against the optimal
LQR design. Overall, the manually tuned pole placement achieves the time-domain specifications with physically
reasonable control effort.

3.2 Luenberger Observer Design and Performance
As can be seen in our measurement vector, y, not all states are directly measured. Only the outputs
y = [or 50]
are available. To reconstruct the full state vector, we design a Luenberger observer of the form
i=Ai+Bu+L(y—-C%), (22)
where 2 is the state estimate and L is the observer gain. The estimation error e = x — & can therefore be written as
e=(A-LC)e. (23)

Because the plant is fully observable (Part A.3), the eigenvalues of A — LC can be placed anywhere.

From lecture, a guideline is to choose the observer poles to be faster than, but not orders of magnitude faster
than, the closed-loop controller poles. This ensures that the state estimate converges rapidly relative to the plant
dynamics without amplifying sensor noise excessively. Here we select the observer poles to be five times faster than
the four dominant controller poles:

Aobs = 5-{ —0.00123, —0.00115, —0.00110, —0.00100 } (24)
={—0.00615, —0.00575, —0.00550, —0.00500} (25)

and compute the gain using L = place(AT, 0T, \p)T.



The controller and observer are combined by forming an 8-state augmented system in which the true plant
and the observer evolve together. With zero initial observer error (#(0) = 2(0)), the estimated and true states are
numerically indistinguishable as expected. Without error, the two states should behave identically. In the case with
a large initial mismatch, we set a 50% error in the initial estimate, #(0) = 0.5x(0). The resulting trajectories are
shown in Fig. 4. For all four states, the estimated trajectories converge rapidly to the true trajectories within roughly
half an orbit, and the residual estimation error is negligible over the remainder of the simulation.

Observer Convergence from Non-zero Initial Error
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Figure 4: 50% Error Luenberger Observer Convergence

The convergence rate is quantified in Fig. 5, which plots the Euclidean norm ||e(t)||2 for both zero and non-zero
initial observer error. With zero initial error, the norm remains essentially at machine precision. With 50% initial
error, the norm peaks at approximately 4.5 in mixed (km, rad) units before decaying by more than two orders of
magnitude, consistent with the real parts of the observer poles in Eq. (25). This confirms that the observer behaves
as designed.
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Figure 5: Luenberger Observer Error Magnitude Convergence



To assess the impact on closed—-loop performance, Fig. 6 compares the manual full-state feedback response (using
the true states) with the manual+observer configuration (using Z) for the same initial condition. The two responses
are similar, both satisfy the settling and overshoot constraints defined in Part A.2. This suggests that the observer
does not degrade the performance when its poles are chosen moderately faster than the controller poles.

Manual Full-State vs Manual+Observer Closed-Loop Response
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Figure 6: Manual Pole Placement Response Versus Observer Response

In a realistic setting with sensor noise, the choice of fast observer poles would trade estimation speed against
noise amplification. Because L multiplies the output residual y — C'Z, high-frequency measurement noise would be
injected directly into the estimated states and, through the state feedback, into the control input. For this project,
we neglect measurement noise and so the significance of this is not relevant. However, the current observer design
would likely need to be slowed down in a noisy environment or replaced by a Kalman filter to avoid excessive control
chattering.

3.3 Infinite-Horizon LQR Design with Observer and Comparison
Finally, we design an optimal state feedback law using the infinite—horizon quadratic cost
o0
g / (27 Qz + uT Ru) dt, (26)
0

where () penalizes state deviations and R penalizes control effort. We select () and R using Bryson’s rule as outlined
in the lecture so that each term in the cost is scaled by its maximum allowable magnitude. Let

0.2 57’0
1.0 _ 9.80665 2 Umax
max — s max — 0.01 =001 x ——k , max — | _ ’ 27
v 0.2, ! 9 1000 " {uj 7
1.0

where 07 and 06 are the initial perturbations and g is standard gravity. The components of z,,x correspond
to the 20% overshoot/undershoot limits for the position states and conservative bounds for the velocity states.The
components of uyay correspond to a 0.01 G maximum acceleration as previously discussed.

We then specify relative importance weights

0.10

0.05 0.5
Olstates = 0.801 ’ ﬁinputs = |:05:| ;
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assigning the largest weight to angular position (which directly affects along—-track error) while giving smaller but
non-zero weight to the remaining states. It was found through experimentation that the larger weight on angular
position was required to get the response to meet the design guidelines previously stated. The control weights are
chosen equal because both thrusters are equally limited. Following Bryson’s rule, we define

o 2 3 2
Q= diag((svsmes) ) , R= pdiag((ltmputs> ) ) (28)

where the scalar p > 0 tunes the overall trade—off between performance and control effort. Through trial-and-error
simulations, we found that p = 80 resulted in a balance that met our design requirements.

With these matrices, the MATLAB command 1qr (A, B, Q,R) returns the optimal gain Kigr and the corre-
sponding closed-loop poles of A — BKjggr. All LQR poles lie in the open left-half plane with real parts of roughly
the same order of magnitude as the manual design. Parameters were adjusted until this was the case in order to get
a similar response to what we manually achieved in order to ensure a fair "energy” comparison. Compared with the
manually placed poles, the LQR poles are more evenly distributed, leading to a smoother, slightly less oscillatory
response.

To compare fairly with the previous sections, we retain the same observer gain L from Part B.5 and use the
estimated state in the LQR control law:

u = *KLQR‘%- (29)

The resulting closed-loop perturbation response is shown in Fig. 7. Relative to the manual design, the LQR controller
produces a slightly faster and more monotone return to the origin with reduced (almost zero) undershoot, while still
meeting the 5% settling and +20% overshoot limits within one orbital period.

Manual vs LQR Closed-Loop Response
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Figure 7: Manual Pole Placement Response Versus LOQR Selected Response

The corresponding thrust accelerations are plotted in Fig. 8.



Manual vs LQR Thrust Acceleration Response
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Figure 8: Manual Pole Placement Response Versus LQR Selected Response

Despite the faster settling performance, shown in Fig. 7, the LQR controller commands slightly lower peak ra-
dial and in-track thrusts than the manual design and maintains a smaller total thrust magnitude at all times while
satisfying the same +0.01 g constraint. The integrated LQR actuator “energy”

Tim
Bion= [ lluan(0)?de (50
0
is 38.01% smaller than E,,,, from Eq. (21).

Erman = 9.7806 x 107 % km? /s>, Eigp = 6.0633 x 107% km?/s®.

Therefore, the LQR design achieves at least comparable (if not better) disturbance-rejection performance while
also requiring less control effort.



APPENDIX

%Clear workspace
clear; close all; clc;

%Define Orbital Constants
mu = 398600; %km3/s2
r0 = 6678; %km

%Set Initial Condition (small perturbations about nominal orbit)

%X = [delta r; delta rdot; delta theta; delta thetadot]
deltar0 = 0.1; %0.1 km = 100 m radial deviation
deltardotO = 0.0; %km/s

deltatheta0 = deg2rad(0.5); %rad (0.5 degrees)
deltathetad0 = 0.0; %rad/s

xnom = [deltar0O; deltardotO; deltatheta0O; deltathetadO];

%Define A, B, C, D matrices (At nominal Orbit)

A= [0 1 0 0;
3*mu/r03 0 0 2*sqrt(mu/r0);
0 0 0 1;
0 -2*sqrt(mu/(xr05)) 0 0];
B = [0 0;
1 0;
0 0;
0 1/xr0];

C=1[100 0;
0010];

D = zeros(2);

%% Part 1, Steps 1-3 - Linear System Analysis
%Find eigenvalues of A matrix (open-loop poles)
lambda = eig(A);

disp(”Open Loop A Matrix Eigenvalues: ”);
disp(lambda) ;

%Determine Reachability

P = ctrb(A, B);

rp = rank(P); %Full Rank == Fully Reachable
disp(”Reachability Rank: ” + rp + ” (Should be 4)”);

%Determine Observability

O = obsv(A, C);

ro = rank(0); %Full Rank == Fully Observable
disp(”Observability Rank: ” + ro + ” (Should be 4)”);

%Set up Linear System
sys = ss(A, B, C, D);

%Determine time vector for 2 orbits
Torbit = 2*pi/sqrt(mu/r03); %orbital period [s]
numOrbits = 5;

t = linspace(0, numOrbits*Torbit, 1000); %Simulation time vector [s]

%Simulate zero-input response from perturbation initial condition

10



[y, tOut] = initial(sys, xnom, t);

w || %% Part 2, Step 4 - Closed Loop Control
a || %2Desired reference values

« || rhist = zeros(length(t),2);

« || %Define augmented matrices

o ||Aaug = [ A zeros(4,2);

w || -C zeros(2,2)];

s ||Baug = [ B; zeros(2,2)];

n || Faug = [zeros(size(B)); eye(2)];

72 Caug

[ C zeros(2)];
n ||Daug = zeros(size(Caug,1),size(Baug,2));

% || 2Choose poles to satisfy requirements
7 ||poles = [-0.00123, -0.001, -0.0011, -0.00115, -0.00018, -0.0001];
» || Kaug = place(Aaug, Baug, poles);

w0 || %Define augmented closed loop system

s [|AaugCL = Aaug - Baug*Kaug;

« || BaugCL = Faug;

5 || sysCL = ss(AaugCL, BaugCL, Caug, Daug);

55 || %Get response from reference profile

s || [yCLaug, ,xCLaug] = lsim(sysCL, rhist, t, [xnom; zeros(2,1)]);
s || %Compute actuator efforts in each case, where uclaug = -K ~©
» ||[uCLaug = -(Kaug * xCLaug’); %units: km/s2

xclaug

9 || %Convert control accelerations from km/s2 to g’s

2||g0 = 9.80665; %m/s2

o || kmps2tog = 1000 / g0; %(km/s2) * (1000 m/km) / (9.80665 m/s2)
s [|uCLaugg = uCLaug * kmps2tog; %now in units of g

% || %% Part 2, Step 5 - Luenberger Observer
v || %Select observer poles
s ||polesluen = 5 * real(poles(1:4));

w || %Compute Observer Gain

o [|L = place(A’, C’, polesluen)’;
102
ws || sExtract feedback part from augmented gain
0 ||Kx = Kaug(:, 1:4); %Feedback gains

ws ||[K1 = Kaug(:, 5:6); %Integrator gains

106
w || %4Form Augmented Matrices

ws [|[Aclaug = [A - B*Kx, B*Kx ;...

109 zeros(4), A - L*C];

o ||Bclaug = [B*Ki; zeros(4, size(Ki, 2))];

w ||Cclaug = [C, zeros(size(C, 1), 4)];

w2 ||Dclaug = zeros(size(Cclaug, 1), size(Bclaug, 2));

m ||%Case 1 - Zero initial observer error
s [|z0casel = [xnom; zeros(4, 1)];

11



%Case 2: Non-zero observer error
percentError = 0.5;
z0case2 = [xnom; xnom*percentError];

%Simulate Case 1

sysObs1l = ss(Aclaug, Bclaug, Cclaug, Dclaug);
[, , zObsl1l] = lsim(sysObsl, rhist, t, zOcasel);
xtruecasel = zObs1(:,1:4);

ehistcasel = zObs1(:,5:8);

xhatcasel = xtruecasel - ehistcasel;
esterrcasel = xXtruecasel - xhatcasel;

%Simulate Case 2

sysObs2 = ss(Aclaug, Bclaug, Cclaug, Dclaug);
[, , zObs2] = lsim(sysObs2, rhist, t, zOcase2);
Xtruecase2 = zObs2(:,1:4);

ehistcase2 = zObs2(:,5:8);

xhatcase2 = xtruecase2 - ehistcase2;
esterrcase2 = xtruecase2 - xhatcase?2;

%Display Observer Poles

eigobs = eig(A - L*C);
disp(”Observer poles (A - L*C):”);
disp(eigobs);

%% Part 2, Step 6 - Infinite-Horizon Cost Function

%Define Max Allowable Deviations

xmaxdeltar = 0.20 * deltarO; %km (20% of initial radial offset)
xmaxdeltardot = 1.0; %km/s

xmaxdeltatheta = 0.20 * deltatheta0; %rad (20% of initial angle offset)
xmaxdeltathetadot = 1e0; %rad/s
xmaxvec = [xmaxdeltar; xmaxdeltardot; xmaxdeltatheta; xmaxdeltathetadot];

%Define Max allowable control accelerations
umaxg = 0.01; %Max acceleration = 0.01 g
umaxkmps2 = umaxg * g0 / 1000; %Convert to km/s2
umaxvec = umaxkmps2 * [1; 1];

%Define relative importance of each state (sum to 1)
alphastates = [0.10; 0.05; 0.80; 0.05];

%Define relative importance of each input (sum to 1)
betainputs = [0.5; 0.5]; %Equal weight thrusters

%Define overall tradeoff between state deviations and control effort

rho = 80;

%Build Q and R via Bryson’s Rule
Qlqr = diag((alphastates ./ xmaxvec).2);
Rlqr = rho * diag((betainputs ./ umaxvec).2);

%Calculate optimal gains
[Klqr, Slqr, ] = 1qr(A, B, Qlqr, Rlqr);

%Compare closed-loop poles with manual design

eigmanual = eig(A - B*Kx);
eiglqr = eig(A - B*Klqr);

12



7 [|disp(”Manual closed-loop poles (A - B*Kx):”);
7 || disp(eigmanual) ;

i ||disp(”LQR closed-loop poles (A - B*Klqr):”);
180 dlsp(elglqr) 5

w2 || %Create Luenberger Observer Augmented Dynamics
w5 [|Acllqrobs = [A - B*Klqr, B * Klqr;...

184 zeros(4), A - L*C];

55 || Bcllqrobs = zeros(8, size(rhist, 2));

i ||Ccllqrobs = eye(8);

w || Dcllqrobs zeros (8, size(rhist,2));

w || Create State Space Model Object
w || syslqrobs = ss(Acllqrobs, Bcllqrobs, Ccllqrobs, Dcllqrobs);

w2 || %Create 0% initial state error in observer for comparing response
s || percentError = 0.0;
wi ||z01lgr = [xnom; xnom * percentError];

ws || %4Simulate LQR and observer closed loop
w || [, , zlqr] = lsim(syslqrobs, rhist, t, z0lqr);

w || %Pull out true and estimated states

w0 || xtruelqr = zlqr(:, 1:4); %True States

. || ehistlqr = zlqr(:, 5:8); %Error States

22 || xhatlqr = xtruelqr - ehistlqr; %Estimated = True - Error
203
200 || %Compute LQR control forcing based on estimated state [Acceleration = km/s2]
25 |[|ulqr = -(Klqr * xhatlqr’)’;

206
w7 || %Covert to Gs of acceleration
x: [lulqrg = ulqr * kmps2tog;

209
20 || 4Manual controller (From Part 4) control based on estimated state (case 2 from
part 5)

21 |[|umanual = uCLaug’;
22 ||umanualg = umanual

*

kmps2tog;

x4 || %ZNumerically integrate actuation acceleration to get ”Total Energy”-ish
comparison

25 ||Emanual = trapz(t, sum(umanual.2, 2)); %Manual state feedback

26 ||ELqr = trapz(t, sum(ulqr.2, 2)); %LQR state feedback

2: ||disp(”Manual controller energy: ”
20 || disp(”LQR controller energy: ”

+ Emanual) ;
+ Elqr);

21 || %2Run LQR with 50% initial observer error

22 || percentError = 0.5;

2 || z0lqrerr = [xnom; xnom*percentError];

2 || [,,zlqrerr] = lsim(syslqrobs,rhist,t,z0lqrerr);
»s || xtruelqrerr = zlqrerr(:,1:4);

25 || %% Produce Open Loop Response Figures
2o || figure(’Color’,’w’);
20 || tiles = tiledlayout(’flow’);
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%0verall title for the tiled layout
axisFontSize = 16;
plotTitleFontSize = 18;
figureTitleFontSize = 22;
title(tiles, ’Open-Loop Perturbation Response Over Two Orbits’, ”Interpreter”,
”Latex”, ”FontSize”, figureTitleFontSize);

%---RADIUS DEVIATION VERSUS TIME---

nexttile;

plot(tOut(tOut;2*Torbit), y((tOut;2*Torbit),1), ’Linewidth’, 2);

grid on;

title(’Radius Deviation vs Time’, ”Interpreter”,”Latex”, ”FontSize”,
plotTitleFontSize);

ylabel(’$“delta r$ (km)’, ”Interpreter”,”Latex”, ”FontSize”, axisFontSize);

xlabel(’Time (s)’, ”Interpreter”,”Latex”, “FontSize”, axisFontSize);

axis padded;
x1im([0, 2*Torbit]);

%---ANGLE DEVIATION VERSUS TIME---

nexttile;

plot(tOut(tOut;2*Torbit), y((tOut;2*Torbit),2), ’LinewWidth’, 2);
grid on;

title(’Angle Deviation vs Time’, ”Interpreter”,”Latex”, ”FontSize”,
plotTitleFontSize);

ylabel(’$“delta “theta$ (rad)’, ”Interpreter”,”Latex”, ”FontSize”, axisFontSize);

xlabel(’Time (s)’, ”Interpreter”,”Latex”, ”FontSize”, axisFontSize);

axis padded;
x1im ([0, 2*Torbit]);

%% Produce Response Figure
figure(’Color’,’w’);
tiles = tiledlayout(’flow’);

%0verall title for the tiled layout
axisFontSize = 16;
plotTitleFontSize = 18;
figureTitleFontSize = 22;

title(tiles, ’Close-Loop Perturbation Response Over Two Orbits’, ”Interpreter”,

"Latex”, “FontSize”, figureTitleFontSize);

%-- RADIUS DEVIATION VERUS TIME PLOT --
nexttile;

%Add in Response Boundaries

radialStep = deltarO;

plotColors = orderedcolors(”gem”);

patch([0, Torbit, Torbit, 0], [0, 0, radialStep * 0.05, radialStep*0.05],
plotColors(3, :), ”FaceAlpha”, 0.2, ”EdgeColor”, “none”);

hold on; box on;

patch([0, tOut(end), tOut(end), Torbit, Torbit, 0], [-radialStep*0.2,
-radialStep*0.2, radialStep*0.2, radialStep*0.2, 0, 0], plotColors(4, :),

”FaceAlpha”, 0.2, ”EdgeColor”, ”none”

yline(0, ’--’, ’LineWidth’, 1.5, ”FontSize”, 14);

xline(Torbit, ’-’, ”1x Orbital Period”, ”LabelHorizontalAlignment”,”center?”,
”LabelVerticalAlignment”,”top”, ”Interpreter”, ”latex”, ”LinewWidth”, 1,
”FontSize”, 14);

%xline(2*Torbit, ’-’, ”2x Orbital Period”, ”LabelHorizontalAlignment”,”left”,
”LabelVerticalAlignment”,”top”, ”Interpreter”, “latex”, ”Linewidth”, 1,

”FontSize”, 14);
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w0 ||yline(radialStep * 0.05, ’-’°, ”$5“%$% Settling Limit”,

”LabelHorizontalAlignment”,”right”, ”LabelVerticalAlignment”,”top”,
”Interpreter”, “latex”, ”LinewWidth”, 1, ”FontSize”, 14);

w0 ||yline(radialStep * 0.20, ’-’°, ”$20“%$ Undershoot Limit”,
”LabelHorizontalAlignment”,”right”, ”LabelVerticalAlignment”,”top”,
”Interpreter”, ”latex”, ”LinewWidth”, 1, ”FontSize”, 14);

x ||yline(radialStep *-0.20, ’-’, ”$20“%$ Overshoot Limit”,
”LabelHorizontalAlignment”,”right”, ”LabelVerticalAlignment”,”bottom”,
”Interpreter”, “latex”, ”LinewWidth”, 1, ”FontSize”, 14);

x || %2Plot Response Line
x5 ||plot(tOut, yCLaug(:,1), ’LinewWidth’, 2);

27 || #Plot Styling

» || grid on;

x0 || title(’Radius Deviation vs Time’, ”Interpreter”,”Latex”, ”FontSize”,
plotTitleFontSize);

w0 || ylabel(’$“delta r$ (km)’, ”Interpreter”,”Latex”, ”FontSize”, axisFontSize);

21 || xlabel(’Time (s)’, ”Interpreter”,”Latex”, ”FontSize”, axisFontSize);

22 || x1im([tOut (1), tOut(end)]);
2 ||ylim([radialStep *-0.30, 1.1*abs(radialStep)]);

w5 || %-- ANGLE DEVIATION VERSUS TIME PLOT --
2 || nexttile;

25 || 2Add in Response Boundaries

20 || angularStep = deltathetaO;

50 || plotColors = orderedcolors(”gem”);

s || patch ([0, Torbit, Torbit, 0], [0, 0, angularStep * 0.05, angularStep*0.05],
plotColors(3, :), ”FaceAlpha”, 0.2, ”EdgeColor”, “none”);

w2 || hold on; box on;

w0 || patch([0, tOut(end), tOut(end), Torbit, Torbit, 0], [-angularStep*0.2,
-angularStep*0.2, angularStep*0.2, angularStep*0.2, 0, 0], plotColors(4, :),

”FaceAlpha”, 0.2, ”EdgeColor”, ”none”

s || yline(0, ’--’, ’Linewidth’, 1.5, ”FontSize”, 14);

» || x1line(Torbit, ’-’, ”1x Orbital Period”, ”LabelHorizontalAlignment”,”center”,
”LabelVerticalAlignment”,”top”, ”Interpreter”, ”latex”, ”LineWidth”, 1,
”FontSize”, 14);

w6 || %x1ine (2*Torbit, ’-’, ”2x Orbital Period”, ”LabelHorizontalAlignment”,”left”,
”LabelVerticalAlignment”,”top”, ”Interpreter”, “latex”, ”Linewidth”, 1,
”FontSize”, 14);

57 || yline (angularStep * 0.05, ’-’, ”$5“%$% Settling Limit”,
”LabelHorizontalAlignment”,”right”, ”LabelVerticalAlignment”,”top”,
?Interpreter”, ”latex”, ”LineWidth”, 1, ”FontSize”, 14);

ws || yline (angularStep * 0.20, ’-’, ”$20“%$ Undershoot Limit”,
”LabelHorizontalAlignment”,”right”, ”LabelVerticalAlignment”,”top”,
?Interpreter”, ”latex”, ”LineWidth”, 1, ”FontSize”, 14);

w || yline (angularStep *-0.20, ’-’, ”$20“%$ Overshoot Limit”,
”LabelHorizontalAlignment”,”right”, ”LabelVerticalAlignment”,”bottom”,
?Interpreter”, ”latex”, ”LineWidth”, 1, ”FontSize”, 14);

su || %Plot Response Line
s ||plot(tOut, yCLaug(:,2), ’LinewWidth’, 2);

su || %Plot Styling

315 grid on;

s [|title(’Angle Deviation vs Time’, ”Interpreter”,”Latex”, ”FontSize”,
plotTitleFontSize);

57 || ylabel(’$“delta “theta$ (radians)’, ”Interpreter”,”Latex”, ”FontSize”,
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axisFontSize);

5 || x1label(’Time (s)’, ”Interpreter”,”Latex”, ”FontSize”, axisFontSize);
319 Xlim([tOut(l), tOut(end)]);

w0 [|ylim([angularStep *-0.30, 1.1*abs(angularStep)]);

22 || %% Produce Output Force Figure
w || figure(’Color’,’w’);
2 || tiles = tiledlayout(’flow’);

w || %0verall title for the tiled layout

w7 || axisFontSize = 14;

w2 ||plotTitleFontSize = 16;

w || figureTitleFontSize = 22;

0 || title(tiles, ’Close-Loop Thrust Acceleration Response Over Two Orbits’,
”Interpreter”, “Latex”, ”FontSize”, figureTitleFontSize);

32 || %—---RADIAL FORCING ACCELERATION VERSUS TIME---

s || nexttile;

s || patch ([0, tOut(end), tOut(end), 0], [-0.01 -0.01 0.01 0.01], plotColors(5, :),
’FaceAlpha’, 0.1, ’EdgeColor’, ’none’);

55 || hold on;

s || plot (tOut, uCLaugg(l,:), ’Linewidth’, 2.0); hold on
s || yline (0.01)

338 yline(-0.0l);

339 ylim([—0.02 0.02]);

sa || %Plot Styling and Labels
se || grid on;

s || title(’Radial Thrust-Generated Acceleration vs Time’, ”Interpreter”,”Latex”,
"FontSize”, plotTitleFontSize);

su ||ylabel(’Radial Thrust $“delta u-1$% (g)’, ”Interpreter”,”Latex”, ”FontSize”,
axisFontSize);

55 || xlabel (’Time (s)’, ”Interpreter”,”Latex”, ”FontSize”, axisFontSize);

s || x1im([tOut (1), tOut(end)]);

sus || %—--IN-TRACK FORCING ACCLERATION VERSUS TIME---

s [[nexttile;

50 || patch([0, tOut(end), tOut(end), 0], [-0.01 -0.01 0.01 0.01], plotColors(5, :),
>FaceAlpha’, 0.1, ’EdgeColor’, ’none’);

55 || hold on;

52 || plot (tOut, uCLaugg(2,:), ’LinewWidth’, 2.0); hold on
353 yline(0.0l);

550 || yline(-0.01);

355 ylim([—0.0Z 0.02]);

%Plot Styling and Labels

358 grid on;

s [|title(’In-Track Thrust-Generated Acceleration vs Time’, ”Interpreter”,”Latex”,
”FontSize”, plotTitleFontSize);

s || ylabel(’In-Track Thrust $“delta u-2$ (g)’, ”Interpreter”,”Latex”, ”FontSize”,
axisFontSize);

s || xlabel(’Time (s)’, ”Interpreter”,”Latex”, ”FontSize”, axisFontSize);

s || x1im([tOut (1), tOut(end)]);

s64 || %=--TOTAL FORCING ACCELERATION VERSUS TIME---
ws ||nexttile(tiles, ”south”, [1, 2]);
w [lumagg = sqrt(uCLaugg(l,:).2 + uCLaugg(2,:).2); %Forcing magnitude in g

s || 2Plot Bounding Box
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411

plotColors = orderedcolors(”gem”);

patch([0, tOut(end), tOut(end), 0], [0 O 0.01 0.01], plotColors(5, :),
’FaceAlpha’, 0.1, ’EdgeColor’, ’none’);

hold on;

%Plot Line
plot(t, umagg, ’LinewWidth’, 2.0);

%Add in Boundaries

yline(0.01, ’-’, ”Maximum Acceleration = 0.01G”, ”Interpreter”, ”Latex”,
’LabelHorizontalAlignment’, ’left’, ’LabelVerticalAlignment’,’top’);

yline(0, ’-’);

%Plot Styling

grid on;

title(’Total Thrust Acceleration Magnitude vs Time’, ”Interpreter”,”Latex”,
”FontSize”, plotTitleFontSize);

ylabel(’Total Thrust $“—“mathbf-u“—$ (g)’, ”Interpreter”,”Latex”, ”FontSize”,
axisFontSize);

xlabel(’Time (s)’, ”Interpreter”,”Latex”, ”FontSize”, axisFontSize);

ylim([-0.001, 0.02]);
x1lim([tOout (1), tout(end)]);

%% Observer Performance Plots

figure(’Color’,’w’);

tiles = tiledlayout(’flow’, ’TileSpacing’,’compact’,’Padding’,’compact’);
axisFontSize = 16;

plotTitleFontSize = 18;

figureTitleFontSize = 22;

timeEnd = Torbit * 2;

%Set Figure Window Title

title(tiles, ’Observer Convergence from Non-zero Initial Error’,
”Interpreter”,”Latex”,”FontSize”,figureTitleFontSize);

plotColors = orderedcolors(”gem”);

%---Delta R Plot---
nexttile;

%Plot the True State
plot(t, xtruecase2(:, 1), ’-’, ’Color’, plotColors(1l, :), ’LineWidth’, 2.0);
hold on;

%Plot Estimated Case
plot(t, xhatcase2(:, 1), ’-’, ’Color’, plotColors(2, :), ’Linewidth’, 2.0);

%Plot Styling

ylabel(”$“delta r$ (km)”, ”Interpreter”,”Latex”,”FontSize”,axisFontSize);
xlabel(’Time (sec)’, ”Interpreter”,”Latex”,”FontSize”,axisFontSize);
title(’Radial Deviation State’, ”Interpreter”,”Latex”,

”FontSize”,plotTitleFontSize);
box on; grid on; axis padded;
x1im([0, timeEnd]);

%---Delta Rdot Plot---
nexttile;

%Plot the True State
plot(t, xtruecase2(:, 2), ’-’, ’Color’, plotColors(1l, :), ’Linewidth’, 2.0);
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hold on;

%Plot Estimated Case

plot(t, xhatcase2(:, 2), ’-’, ’Color’, plotColors(2, :), ’LinewWidth’, 2.0);
%Plot Styling

ylabel(”$“delta “dot r$ (km/s)”, ”Interpreter”,”Latex”,”FontSize”,axisFontSize);
xlabel(’Time (sec)’, ”Interpreter”,”Latex”,”FontSize”,axisFontSize);
title(’Radial Velocity State’, ”Interpreter”,”Latex”,

”FontSize” ,plotTitleFontSize);
box on; grid on; axis padded;
x1im ([0, timeEnd]);

%---Delta Theta Plot---
nexttile;

%Plot the True State
plot(t, xtruecase2(:, 3), ’-’, ’Color’, plotColors(1l, :), ’Linewidth’, 2.0);
hold on;

%Plot Estimated Case
plot(t, xhatcase2(:, 3), ’-’, ’Color’, plotColors(2, :), ’Linewidth’, 2.0);

%Plot Styling

ylabel(”$“delta “theta$ (rad)”, ”Interpreter”,”Latex”,”FontSize”,axisFontSize);
xlabel(’Time (sec)’, ”Interpreter”,”Latex”,”FontSize”,axisFontSize);
title(’Angular Position State’, ”Interpreter”,”Latex”,

”FontSize” ,plotTitleFontSize);
box on; grid on; axis padded;
x1im ([0, timeEnd]);

%---Delta Thetadot Plot---
nexttile;

%Plot the True State
plot(t, xtruecase2(:, 4), ’-’, ’Color’, plotColors(1l, :), ’Linewidth’, 2.0);
hold on;

%Plot Estimated Case
plot(t, xhatcase2(:, 4), ’-’, ’Color’, plotColors(2, :), ’Linewidth’, 2.0);

%Plot Styling

ylabel(”$“delta “dot “theta$ (rad/s)”,
”Interpreter”,”Latex”,”FontSize”,axisFontSize);

xlabel(’Time (sec)’, ”Interpreter”,”Latex”,”FontSize”,axisFontSize);

title(’Angular Velocity State’, ”Interpreter”,”Latex”,
”FontSize” ,plotTitleFontSize) ;

box on; grid on; axis padded;

x1im ([0, timeEnd]);

legend([”True State”,”Estimated State”],”Interpreter”,”Latex”,’Location’, ’best’,
”FontSize”, axisFontSize);

%% Observer Performance Plots (Zero Initial Error)

figure(’Color’,’w’);

tiles = tiledlayout(’flow’, ’TileSpacing’, ’compact’, ’Padding’, ’compact’);
axisFontSize = 16;

plotTitleFontSize = 18;

figureTitleFontSize = 22;

timeEnd = Torbit * 2;
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title(tiles, ’Observer Convergence from Zero Initial Error’,
”Interpreter”,”Latex”,”FontSize”,figureTitleFontSize) ;
plotColors = orderedcolors(”gem”);

%---Delta R Plot---

nexttile;

plot(t, xtruecasel(:, 1), ’-’, ’Color’, plotColors(1l, :), ’LineWidth’, 2.0);
hold on;

plot(t, xhatcasel(:, 1), ’-’, ’Color’, plotColors(2, :), ’Linewidth’, 2.0);

ylabel(”$“delta r$ (km)”, ”Interpreter”,”Latex”,”FontSize”,axisFontSize);

xlabel(’Time (sec)’, ”Interpreter”,”Latex”,”FontSize”,axisFontSize);

title(’Radial Deviation State’,
”Interpreter”,”Latex”,”FontSize”,plotTitleFontSize);

box on; grid on; axis padded;

x1im ([0, timeEnd]);

%---Delta rdot Plot---

nexttile;

plot(t, xtruecasel(:, 2), ’-’, ’Color’, plotColors(1l, :), ’LineWidth’, 2.0);
hold on;

plot(t, xhatcasel(:, 2), ’-’, ’Color’, plotColors(2, :), ’Linewidth’, 2.0);

ylabel(”$“delta “dot r$ (km/s)”, ”Interpreter”,”Latex”,”FontSize”,axisFontSize);

xlabel(’Time (sec)’, ”Interpreter”,”Latex”,”FontSize”,axisFontSize);

title(’Radial Velocity State’,
”Interpreter”,”Latex”,”FontSize”,plotTitleFontSize);

box on; grid on; axis padded;

x1im ([0, timeEnd]);

%---Delta theta Plot---

nexttile;

plot(t, xtruecasel(:, 3), ’-’, ’Color’, plotColors(1l, :), ’LineWidth’, 2.0);
hold on;

plot(t, xhatcasel(:, 3), ’-’, ’Color’, plotColors(2, :), ’Linewidth’, 2.0);

ylabel(”$“delta “theta$ (rad)”, ”Interpreter”,”Latex”,”FontSize”,axisFontSize);

xlabel(’Time (sec)’, ”Interpreter”,”Latex”,”FontSize”,axisFontSize);

title(’Angular Position State’,
”Interpreter”,”Latex”,”FontSize”,plotTitleFontSize);

box on; grid on; axis padded;

x1im ([0, timeEnd]);

%---Delta thetadot Plot---

nexttile;

plot(t, xtruecasel(:, 4), ’-’, ’Color’, plotColors(1l, :), ’LineWidth’, 2.0);
hold on;

plot(t, xhatcasel(:, 4), ’-’, ’Color’, plotColors(2, :), ’LinewWidth’, 2.0);

ylabel(”$“delta “dot “theta$ (rad/s)”,
”Interpreter”,”Latex”,”FontSize”,axisFontSize) ;

xlabel (’Time (sec)’, ”Interpreter”,”Latex”,”FontSize”,axisFontSize);

title(’Angular Velocity State’,
?Interpreter”,”Latex”,”FontSize”,plotTitleFontSize);

box on; grid on; axis padded;

x1im([0, timeEnd]);

legend([”True State”,”Estimated State”],
”Interpreter”,”Latex”, ’Location’, ’best’, ”FontSize”, axisFontSize);

%% Estimation Error Norms Plots
enormcasel = vecnorm(esterrcasel,2,2); %Case 1 Total Error Magnitude
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enormcase2 = vecnorm(esterrcase2,2,2); %Case 2 Total Error Magnitude

>

figure(’Color’,

axisFontSize = 16
plotTitleFontSize

5

w’);

18;

figureTitleFontSize = 22;
title(”State Estimation Error Norms”, ”Interpreter”,”latex”, ”FontSize”,
figureTitleFontSize);

%Add Error Lines

plot(t, enormcasel,
plot(t, enormcase2,

%Plot Styling

»

» _»

xlabel (”Time (seconds)”,

ylabel(”$“—e(t)“—2$”,

”Color”, plotColors(1l,:), ”LineWidth”, 2.0); hold on;
”Color”, plotColors(2,:), ”Linewidth”, 2.0);

”Interpreter”,”Latex”,”FontSize”,axisFontSize);

”Interpreter”,”Latex”,”FontSize”,axisFontSize);

title(”Observer Error Norm (Zero vs Non-zero Initial Error)?”,
?Interpreter”,”Latex”,”FontSize”,plotTitleFontSize);

legend([”Zero Initial Error”,
”Interpreter”,”Latex”, ’Location’, ’NorthEast’);

box on; grid on;

?50“%Initial Error”],

%% Manual vs LQR Closed-Loop Response (Radial & Angular Positions) Plots
figure(’Color’,’w’);
tiles = tiledlayout(’flow’);

axisFontSize = 16
plotTitleFontSize

>

figureTitleFontSize
title(tiles, ’Manual vs LQR Closed-Loop Response’,
”Interpreter”,”Latex”,”FontSize”,figureTitleFontSize);

18;
= 22;

plotColors = orderedcolors(”gem”);

nexttile;

RADIAL DEVIATION -------------—-—-- %

radialStep = deltar0;

%Settling / overshoot bands
patch([0, Torbit, Torbit,

plotColors(3,
hold on; box on;
patch([0, t(end),

2

0],

[0, 0, radialStep * 0.05, radialStep * 0.05],

”FaceAlpha”, 0.2, ”EdgeColor”, ”none”);

t(end), Torbit, Torbit, 0], [-radialStep * 0.2, -radialStep

0.2, radialStep

*0.2,

radialStep * 0.2, 0, 0], plotColors(4, :),

”FaceAlpha”, 0.2, ”EdgeColor”, ”none”);

yline(0, ’--’, ’LineWwidth’, 1.5, ”FontSize”, 14);

xline(Torbit, ’-’, ”1x Orbital Period”, ”LabelHorizontalAlignment”,”center”,
”LabelVerticalAlignment”,”top”, ”Interpreter”,”latex”, ”Linewidth”,1,
”FontSize”,14);

yline(radialStep * 0.05, ’-’, ”$5“%$% Settling Limit”,
”LabelHorizontalAlignment”,”right”, ”LabelVerticalAlignment”,”top”,

”Interpreter”,”latex”,

yline(radialStep

*

0.20,

>

”Linewidth”,1, ”FontSize”,14);

5

>

?$20“%$ Undershoot Limit”,

”LabelHorizontalAlignment”,”right”, ”LabelVerticalAlignment”,”top”,

”Interpreter”,”latex”,

yline(-radialStep

*

0.20,

>

”Linewidth”,1, ”FontSize”,14);

5

?$20“%$ Overshoot Limit”,
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598

600
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602

603

604

605

606

”LabelHorizontalAlignment”,”right”, ”LabelVerticalAlignment”,”bottom”,
?Interpreter”,”latex”, ”LineWidth”,1, ”FontSize”,14);

%Plot Response Lines
plot(t, yCLaug(:,1), ’Linewidth’, 2.0, ’Color’, plotColors(1l,:)); hold on;
plot(t, xtruelqr(:,1), ’-’, ’Linewidth’, 2.0, ’Color’, plotColors(2,:));

%Plot Styling

grid on;
title(’Radial Deviation vs Time’, ”Interpreter”,”Latex”,
”FontSize” ,plotTitleFontSize);
ylabel(’$“delta r$ (km)’, ”Interpreter”,”Latex”, ”FontSize”,axisFontSize);
xlabel(’Time (s)’, ”Interpreter”,”Latex”, ”FontSize”,axisFontSize);

xlim([t(1), t(end)]);
ylim([radialStep * -0.30, 1.1 * abs(radialStep)]);

Gpmmmmmmm e ANGULAR POSITION ------—---—--mm—— %
nexttile;

angularStep = deltatheta0;

%Settling / overshoot bands (same as previous plots)

patch([0, Torbit, Torbit, 0], [0, O, angularStep * 0.05, angularStep * 0.05],
plotColors(3, :), ”FaceAlpha”, 0.2, ”EdgeColor”, “none”);

hold on; box on;

patch([0, t(end), t(end), Torbit, Torbit, 0], [-angularStep * 0.2, -angularStep
* 0.2, angularStep * 0.2, angularStep * 0.2, 0, 0], plotColors(4, :),

”FaceAlpha”, 0.2, ”EdgeColor”, ”none”);

yline(0, ’--’, ’LineWidth’, 1.5, ”FontSize”,14);

xline(Torbit, ’-’, ”1x Orbital Period”, ”LabelHorizontalAlignment”,”center”,
”LabelVerticalAlignment”,”top”, ”Interpreter”,”latex”, ”LineWidth”,1,
”FontSize”,14);

yline(angularStep * 0.05, ’-’, ”$5“%$ Settling Limit”,
”LabelHorizontalAlignment”,”right”, ”LabelVerticalAlignment”,”top”,
?Interpreter”,”latex”, ”LinewWidth”,1, ”FontSize”,14);

yline(angularStep * 0.20, ’-’, ”$20“%$ Undershoot Limit”,
”LabelHorizontalAlignment”,”right”, ”LabelVerticalAlignment”,”top”,
?Interpreter”,”latex”, ”LinewWidth”,1, ”FontSize”,14);

yline(-angularStep * 0.20, ’-’, ”$20“%$ Overshoot Limit”,
”LabelHorizontalAlignment”,”right”, ”LabelVerticalAlignment”,”bottom”,
?Interpreter”,”latex”, ”LinewWidth”,1, ”FontSize”,14);

%Plot Response Lines

h(1) = plot(t, yCLaug(:,2), ’Linewidth’, 2.0, ’Color’, plotColors(1l,:)); hold
on; %Manual Placement

h(2) = plot(t, xtruelqr(:,3), ’-’, ’Linewidth’, 2.0, ’Color’, plotColors(2,:));
%LOQR Placement

%PLot Styling

grid on;
title(’Angular Position vs Time’, ”Interpreter”,”Latex”,
”FontSize” ,plotTitleFontSize);
ylabel(’$“delta “theta$ (rad)’, ”Interpreter”,”Latex”, ”FontSize”,axisFontSize);
xlabel(’Time (s)’, ”Interpreter”,”Latex”, ”FontSize”,axisFontSize);

x1im([t(1), t(end)]);

ylim([angularStep * -0.30, 1.1 * abs(angularStep)]);

legend(h, [”Manual (Part 4)”, “LQR (Part 6)”],
”Interpreter”,”Latex”, ’Location’, ’NorthEast’, ”FontSize”, axisFontSize);
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608

609

610

%% Manual vs LQR Closed-Loop

figure(’Color’,’w’);
tiles = tiledlayout(’flow’);
axisFontSize =
plotTitleFontSize = 16;

figureTitleFontSize = 22;

title(tiles,
”Interpreter”,”Latex”,
orderedcolors(”gem”) ;

plotColors

nexttile;

%Shaded allowable band +/- 0.01 g

patch([O0,

>FaceAlpha’, 0.1, ’EdgeColor’,

hold on;

%Plot Lines
plot(t, umanualg(:,1),

14;

Acceleration Plots

’Manual vs LQR Thrust Acceleration Response’,
”FontSize”, figureTitleFontSize);

t(end), t(end),

Placement Response

plot(t, ulqrg(:,1),

PLacement Response

RADIAL THRUST ACCELERATION ----------—---—--- %

0], [-0.01, -0.01, 0.01, 0.01], plotColors(5, :),

’Linewidth’,

%Add in Bounding Lines / Limits

yline(0.01,

5

>, ”0.01 g Limit?”,
”LabelHorizontalAlignment”,”left”, “LabelVerticalAlignment”,”top”);

’none’) ;

’Linewidth’, 2.0, ’Color’, plotColors(1l,:)); %Manual Pole

2.0, ’Color’, plotColors(2,:)); %LOR Pole

”Interpreter”,”Latex”,

yline(-0.01, ’-’, ”Interpreter”,”Latex”);

yline(0, ’-’, ”LinewWidth”, 1.0);

%Plot Styling

ylim([-0.02, 0.02]);

x1lim([t(1), t(end)]);

grid on; box on;

title(’Radial Thrust Acceleration’, ”Interpreter”,”Latex”, ”FontSize”,
plotTitleFontSize);

ylabel(’$“delta u-1$ (g)’, ”Interpreter”,”Latex”, ”FontSize”, axisFontSize);

xlabel(’Time (s)’, ”Interpreter”,”Latex”, ”FontSize”, axisFontSize);

Jommmmmmmmm e ———— IN-TRACK THRUST ACCELERATION ----------—-—--—- %

nexttile;

%Shaded allowable band +/- 0.01 g

patch([O0,

’FaceAlpha’, 0.1, ’EdgeColor’,

hold on;

%Plot Lines
plot(t, umanualg(:,2),
plot(t, ulqrg(:,2),

t(end), t(end),

0], [-0.01, -0.01, 0.01, 0.01], plotColors(5, :),

’none’) ;

’Linewidth’, 2.0, ’Color’, plotColors(1l,:));

’Linewidth’, 2.0, ’Color’, plotColors(2,:));

%Add in Bounding Lines / Limits
>, ”0.01 g Limit?”,
”LabelHorizontalAlignment”,”left”, “LabelVerticalAlignment”,”top”);

h(1) =
h(2) =
yline(0.01,
yline(-0.01,
yline(0, ’-

5

5

H]

>

”Interpreter”,”Latex”,

-’, ”Interpreter”,”Latex”);

”Linewidth”,

1.0);
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09

%Plot Styling
ylim([-0.02, 0.02]);
xlim([t(1), t(end)]);
grid on; box on;

title(’In-Track Thrust Acceleration’, ”Interpreter”,”Latex”, ”FontSize”,
plotTitleFontSize);

ylabel(’$“delta u-2$ (g)’, ”Interpreter”,”Latex”, ”FontSize”, axisFontSize);

xlabel(’Time (s)’, ”Interpreter”,”Latex”, ”FontSize”, axisFontSize);

legend(h, [”Manual (Part 4)”, ”"LQR (Part 6)”], ”Interpreter”,”Latex”,
’Location’, ’SouthEast’, FontSize”, axisFontSize);

Jommmmmmmmm e ————— TOTAL THRUST ACCELERATION MAGNITUDE --------=---=---- %

nexttile(tiles, ”south”, [1, 2]);

%Calculate Total Forcing Mangitude
umagmanualg = sqrt(umanualg(:,1).2 + umanualg(:,2).2);
umaglqrg = sqrt(ulqrg(:,1).2 + ulqrg(:,2).2);

%Shaded allowable band +/- 0.01 g
patch([0, t(end), t(end), 0], [0, O, 0.01, 0.01], plotColors(5, :), ’FaceAlpha’,

0.1, ’EdgeColor’, ’none’);
hold on;

%Plot Lines
plot(t, umagmanualg, ’Linewidth’, 2.0, ’Color’, plotColors(1l,:));
plot(t, umaglqrg, ’Linewidth’, 2.0, ’Color’, plotColors(2,:));

%Add in Bounding Lines / Limits

yline(0.01, ’-’, ”0.01 g Limit”, ”Interpreter”,”Latex”,
”LabelHorizontalAlignment”,”left”, ”LabelVerticalAlignment”,”top”);
yline(0, ’-’, ”Linewidth”, 1.0);

%Plot Styling
ylim([-0.001, 0.02]);
x1im([t(1), t(end)]);
grid on; box on;

title(’Total Thrust Acceleration Magnitude’, ”Interpreter”,”Latex”, ”FontSize”,
plotTitleFontSize);

ylabel (’$“—“mathbf-u“—$ (g)’, ”Interpreter”,”Latex”, ”FontSize”, axisFontSize);

xlabel(’Time (s)’, ”Interpreter”,”Latex”, ”FontSize”, axisFontSize);

%% Manual Controller: Full-State vs Manual+Observer Closed-Loop Response

figure(’Color’,’w’);

tiles = tiledlayout(’flow’);

axisFontSize = 16;

plotTitleFontSize = 18;

figureTitleFontSize = 22;

title(tiles, ’Manual Full-State vs Manual+Observer Closed-Loop Response’,
”Interpreter”,”Latex”,”FontSize”,figureTitleFontSize);

plotColors = orderedcolors(”gem”);

%---RADIAL DEVIATION---%
nexttile;
radialStep = deltarO;

%Add in shaded allowance band

patch([0,Torbit,Torbit,0],[0,0,radialStep*0.05,radialStep*0.05],
plotColors(3, :),”FaceAlpha”,0.2,”EdgeColor”, ”none”) ;

hold on;
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740

patch([0,t(end),t(end),Torbit,Torbit,0],
[-radialStep*0.2,-radialStep*0.2,radialStep*0.2,radialStep*0.2,0,0],
plotColors(4, :),”FaceAlpha”,0.2,”EdgeColor”, ”none”) ;

yline(0,’--", LinewWidth’,1.5,”FontSize”,14);

xline(Torbit, ’-’,”1x Orbital Period”, ”LabelHorizontalAlignment”,”center”,
”LabelVerticalAlignment”,”top”,
?Interpreter”,”latex”,”LineWidth”,1,”FontSize”, 14);

yline(radialStep*0.05,’-",”$5“%% Settling Limit”,
”LabelHorizontalAlignment”,”right”, ”LabelVerticalAlignment”,”top”,
?Interpreter”,”latex”,”LinewWidth”,1,”FontSize”, 14);

yline(radialStep*0.20,’-’,7$20“%$ Undershoot Limit”,
”LabelHorizontalAlignment”,”right”, ”LabelVerticalAlignment”,”top”,
?Interpreter”,”latex”,”LinewWidth”,1,”FontSize”, 14);

yline(-radialStep*0.20,’-",7$20“%% Overshoot Limit”,
”LabelHorizontalAlignment”,”right”, ”LabelVerticalAlignment”,”bottom”,

?Interpreter”,”latex”,”LinewWidth”,1,”FontSize”, 14);

%Plot Lines
plot(t,yCLaug(:,1), LinewWidth’,2.0,”Color”,plotColors(1,:));
plot(t,xtruecasel(:,1), LinewWidth’,2.0,”Color”,plotColors(2,:));

%Plot Styling

grid on; box on;

title(’Radial Deviation vs
Time’,”Interpreter”,”Latex”,”FontSize”,plotTitleFontSize);

ylabel(’$“delta r$ (km)’,”Interpreter”,”Latex”,”FontSize”,axisFontSize);

xlabel(’Time (s)’,”Interpreter”,”Latex”,”FontSize”,axisFontSize);

xlim([t(1),t(end)]);

ylim([radialStep*-0.30,1.1"abs(radialStep)]);

%---ANGULAR POSITION---%
nexttile;
angularStep = deltathetaO;

%Add in shaded allowance band

patch([0,Torbit,Torbit,0],[0,0,angularStep*0.05,angularStep*0.05],
plotColors(3, :),”FaceAlpha”,0.2,”EdgeColor”, ”none”) ;

hold on;

patch([0,t(end),t(end),Torbit,Torbit,0],
[-angularStep* 0.2, -angularStep*0.2,angularStep*0.2,angularStep*0.2,0,0],
plotColors(4, :),”FaceAlpha”,0.2,”EdgeColor”, ”none”) ;

yline(0,’--’, Linewidth’,1.5,”FontSize”,14);

xline(Torbit, ’-’,”1x Orbital Period”, “LabelHorizontalAlignment”,”center”,
”LabelVerticalAlignment”,”top”,
?Interpreter”,”latex”,”LinewWidth”,1,”FontSize”, 14);

yline(angularStep*0.05,’-’,”$5“%$% Settling Limit”,
”LabelHorizontalAlignment”,”right”, ”LabelVerticalAlignment”,”top”,
?Interpreter”,”latex”,”Linewidth”,1,”FontSize”, 14);

yline(angularStep*0.20,’-",7$20“%$ Undershoot Limit”,
”LabelHorizontalAlignment”,”right”, ”LabelVerticalAlignment”,”top”,
?Interpreter”,”latex”,”LinewWidth”,1,”FontSize”, 14);

yline(-angularStep*0.20,’-’,”$20“%$ Overshoot Limit”,
”LabelHorizontalAlignment”,”right”, ”LabelVerticalAlignment”,”bottom”,

?Interpreter”,”latex”,”LinewWidth”,1,”FontSize”, 14);

%Plot Lines
h(1) plot(t,yCLaug(:,2), LinewWidth’,2.0,”Color”,plotColors(1l,:));
h(2) = plot(t,xtruecasel(:,3), LinewWwidth’,2.0,”Color”,plotColors(2,:));
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%Plot Styling

grid on; box on;

title(’Angular Position vs
Time’,”Interpreter”,”Latex”,”FontSize”,plotTitleFontSize);

ylabel(’$“delta “theta$ (rad)’,”Interpreter”,”Latex”,”FontSize”,axisFontSize);

xlabel(’Time (s)’,”Interpreter”,”Latex”,”FontSize”,axisFontSize);

x1lim([t(1),t(end)]);

ylim([angularStep*-0.30,1.1*abs(angularStep)]);

legend(h, [’Manual (Full-State)”,”Manual+Observer (Zero Error)”],
?Interpreter”,”Latex”,”Location”,”NorthEast”,”FontSize”,axisFontSize);

%% LOR Closed-Loop Response with Observer Error (0% vs 50% Initial Error)

figure(’Color’,’w’);

tiles = tiledlayout(’flow’);

axisFontSize = 16;

plotTitleFontSize = 18;

figureTitleFontSize = 22;

title(tiles, ’LQR Closed-Loop Response with Observer Error’,
”Interpreter”,”Latex”,”FontSize”,figureTitleFontSize);

plotColors = orderedcolors(”gem”);

%---RADIAL DEVIATION---%
nexttile;
radialStep = deltarO;

%Add in Allowable Tolerance

patch([0,Torbit,Torbit,0],[0,0,radialStep*0.05,radialStep*0.05],
plotColors(3, :),”FaceAlpha”,0.2,”EdgeColor”, ”none”) ;

hold on;

patch([0,t(end),t(end),Torbit,Torbit,0],
[-radialStep*0.2,-radialStep*0.2,radialStep*0.2,radialStep*0.2,0,0],
plotColors(4, :),”FaceAlpha”,0.2,”EdgeColor”, ”none”) ;

yline(0,’--", LinewWidth’,1.5,”FontSize”,14);

xline(Torbit, ’-’,”1x Orbital Period”, ”LabelHorizontalAlignment”,”center”,
”LabelVerticalAlignment”,”top”,
”Interpreter”,”latex”,”LineWidth”,1,”FontSize”, 14);

yline(radialStep*0.05,’-",”$5“%% Settling Limit”,
”LabelHorizontalAlignment”,”right”, ”LabelVerticalAlignment”,”top”,
?Interpreter”,”latex”,”LinewWidth”,1,”FontSize”, 14);

yline(radialStep*0.20,’-’,”$20“%$ Undershoot Limit”,
”LabelHorizontalAlignment”,”right”, ”LabelVerticalAlignment”,”top”,
?Interpreter”,”latex”,”LinewWidth”,1,”FontSize”, 14);

yline(-radialStep*0.20,’-",7$20“%% Overshoot Limit”,
”LabelHorizontalAlignment”,”right”, ”LabelVerticalAlignment”,”bottom”,

?Interpreter”,”latex”,”LinewWidth”,1,”FontSize”, 14);

%Plot Lines
plot(t,xtruelqr(:,1), ’Linewidth’,2.0,”Color”,plotColors(1l,:));
plot(t,xtruelqrerr(:,1), ’LinewWidth’,2.0,”Color”,plotColors(2,:));

%Plot Styling
grid on; box on;
title(’Radial Deviation vs Time

(LOR) ’,”Interpreter”,”Latex”,”FontSize” ,plotTitleFontSize);
ylabel(’$“delta r$ (km)’,”Interpreter”,”Latex”,”FontSize”,axisFontSize);
xlabel(’Time (s)’,”Interpreter”,”Latex”,”FontSize”,axisFontSize);
xlim([t(1),t(end)]);
ylim([radialStep*-0.30,1.1*abs(radialStep)]);
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800

801

802

803

804

805

806

807

808

809

810

%—---ANGULAR POSITION---%
nexttile;
angularStep = deltathetaO;

%Add in shaded allowable bands

patch([0,Torbit,Torbit,0],[0,0,angularStep*0.05,angularStep*0.05],
plotColors(3, :),”FaceAlpha”,0.2,”EdgeColor”, ”none”) ;

hold on;

patch([0,t(end),t(end),Torbit,Torbit,0],
[-angularStep* 0.2, -angularStep*0.2,angularStep*0.2,angularStep*0.2,0,0],
plotColors(4, :),”FaceAlpha”,0.2,”EdgeColor”, ”none”) ;

yline(0,’--", LinewWidth’,1.5,”FontSize”,14);

xline(Torbit, ’-’,”1x Orbital Period”, ”LabelHorizontalAlignment”,”center”,
”LabelVerticalAlignment”,”top”,
”Interpreter”,”latex”,”LineWidth”,1,”FontSize”, 14);

yline(angularStep*0.05,’-",”$5%$ Settling Limit”,
”LabelHorizontalAlignment”,”right”, ”LabelVerticalAlignment”,”top”,
?Interpreter”,”latex”,”LinewWidth”,1,”FontSize”, 14);

yline(angularStep*0.20,’-",”$20“%$ Undershoot Limit”,
”LabelHorizontalAlignment”,”right”, ”LabelVerticalAlignment”,”top”,
?Interpreter”,”latex”,”LinewWidth”,1,”FontSize”, 14);

yline(-angularStep*0.20,’-’,”$20“%$ Overshoot Limit”,
”LabelHorizontalAlignment”,”right”, ”LabelVerticalAlignment”,”bottom”,

?Interpreter”,”latex”,”LinewWidth”,1,”FontSize”, 14);
h(1) plot(t,xtruelqr(:,3), Linewidth’,2.0,”Color”,plotColors(1l,:));
h(2) = plot(t,xtruelqrerr(:,3),’ ’LinewWidth’,2.0,”Color”,plotColors(2,:));

%Plot Styling
grid on; box on;
title(’Angular Position vs Time
(LOR) ’,”Interpreter”,”Latex”,”FontSize” ,plotTitleFontSize);
ylabel(’$“delta “theta$ (rad)’,”Interpreter”,”Latex”,”FontSize”,axisFontSize);
xlabel(’Time (s)’,”Interpreter”,”Latex”,”FontSize”,axisFontSize);
x1im([t(1),t(end)]);
ylim([angularStep*-0.30,1.1*abs(angularStep)]);
legend(h, [’LOR (0“% Initial Error)”,”LOR (50“% Initial Error)”],
?Interpreter”,”Latex”,”Location”,”NorthEast”,”FontSize”,axisFontSize);
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